Spectral density estimation is important in many different areas including astronomy, radio communications, and geophysics. Although many spectral density estimation techniques assume equally spaced complete data, in most cases, real data include missing values. To solve this problem we suggest a new nonparametric spectral density estimation procedure with missing data. Our algorithm is based on the self-consistency and relation between autocovariance and spectral density function, thus it is intuitive and simple. Also, it can be applied with any nonparametric spectral density estimation method such as kernel estimators, wavelet regression, and spline estimators. The practical performance of the proposed method is reported through simulation study.
【 预 览 】
附件列表
Files
Size
Format
View
Nonparametric Spectral Density Estimation for Time Series Data with Missing Values