Swiss Journal of Economics and Statistics | |
Causal Machine Learning and its use for public policy | |
Conference Key Note | |
Michael Lechner1  | |
[1] Swiss Institute for Empirical Economic Research (SEW), University of St. Gallen, Varnbüelstrasse 14, 9000, St. Gallen, Switzerland; | |
关键词: Causal analysis; Machine Learning; Econometric evaluation; | |
DOI : 10.1186/s41937-023-00113-y | |
received in 2023-02-20, accepted in 2023-04-26, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
In recent years, microeconometrics experienced the ‘credibility revolution’, culminating in the 2021 Nobel prices for David Card, Josh Angrist, and Guido Imbens. This ‘revolution’ in how to do empirical work led to more reliable empirical knowledge of the causal effects of certain public policies. In parallel, computer science, and to some extent also statistics, developed powerful (so-called Machine Learning) algorithms that are very successful in prediction tasks. The new literature on Causal Machine Learning unites these developments by using algorithms originating in Machine Learning for improved causal analysis. In this non-technical overview, I review some of these approaches. Subsequently, I use an empirical example from the field of active labour market programme evaluation to showcase how Causal Machine Learning can be applied to improve the usefulness of such studies. I conclude with some considerations about shortcomings and possible future developments of these methods as well as wider implications for teaching and empirical studies.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202308152303011ZK.pdf | 1503KB | download | |
Fig. 1 | 230KB | Image | download |
MediaObjects/12888_2023_4756_MOESM3_ESM.docx | 223KB | Other | download |
41116_2023_36_Article_IEq649.gif | 1KB | Image | download |
41116_2023_36_Article_IEq684.gif | 1KB | Image | download |
41116_2023_36_Article_IEq686.gif | 1KB | Image | download |
41116_2023_36_Article_IEq688.gif | 1KB | Image | download |
41116_2023_36_Article_IEq689.gif | 1KB | Image | download |
MediaObjects/12888_2023_4753_MOESM2_ESM.pdf | 487KB | download | |
41116_2023_36_Article_IEq696.gif | 1KB | Image | download |
41116_2023_36_Article_IEq698.gif | 1KB | Image | download |
41116_2023_36_Article_IEq699.gif | 1KB | Image | download |
41116_2023_36_Article_IEq706.gif | 1KB | Image | download |
MediaObjects/12888_2023_4761_MOESM1_ESM.docx | 55KB | Other | download |
41116_2023_36_Article_IEq708.gif | 1KB | Image | download |
41116_2023_36_Article_IEq710.gif | 1KB | Image | download |
41116_2023_36_Article_IEq716.gif | 1KB | Image | download |
41116_2023_36_Article_IEq793.gif | 1KB | Image | download |
Fig. 1 | 1795KB | Image | download |
41116_2023_36_Article_IEq795.gif | 1KB | Image | download |
41116_2023_36_Article_IEq799.gif | 1KB | Image | download |
41116_2023_36_Article_IEq801.gif | 1KB | Image | download |
【 图 表 】
41116_2023_36_Article_IEq801.gif
41116_2023_36_Article_IEq799.gif
41116_2023_36_Article_IEq795.gif
Fig. 1
41116_2023_36_Article_IEq793.gif
41116_2023_36_Article_IEq716.gif
41116_2023_36_Article_IEq710.gif
41116_2023_36_Article_IEq708.gif
41116_2023_36_Article_IEq706.gif
41116_2023_36_Article_IEq699.gif
41116_2023_36_Article_IEq698.gif
41116_2023_36_Article_IEq696.gif
41116_2023_36_Article_IEq689.gif
41116_2023_36_Article_IEq688.gif
41116_2023_36_Article_IEq686.gif
41116_2023_36_Article_IEq684.gif
41116_2023_36_Article_IEq649.gif
Fig. 1
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]