期刊论文详细信息
Swiss Journal of Economics and Statistics
Causal Machine Learning and its use for public policy
Conference Key Note
Michael Lechner1 
[1] Swiss Institute for Empirical Economic Research (SEW), University of St. Gallen, Varnbüelstrasse 14, 9000, St. Gallen, Switzerland;
关键词: Causal analysis;    Machine Learning;    Econometric evaluation;   
DOI  :  10.1186/s41937-023-00113-y
 received in 2023-02-20, accepted in 2023-04-26,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

In recent years, microeconometrics experienced the ‘credibility revolution’, culminating in the 2021 Nobel prices for David Card, Josh Angrist, and Guido Imbens. This ‘revolution’ in how to do empirical work led to more reliable empirical knowledge of the causal effects of certain public policies. In parallel, computer science, and to some extent also statistics, developed powerful (so-called Machine Learning) algorithms that are very successful in prediction tasks. The new literature on Causal Machine Learning unites these developments by using algorithms originating in Machine Learning for improved causal analysis. In this non-technical overview, I review some of these approaches. Subsequently, I use an empirical example from the field of active labour market programme evaluation to showcase how Causal Machine Learning can be applied to improve the usefulness of such studies. I conclude with some considerations about shortcomings and possible future developments of these methods as well as wider implications for teaching and empirical studies.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308152303011ZK.pdf 1503KB PDF download
Fig. 1 230KB Image download
MediaObjects/12888_2023_4756_MOESM3_ESM.docx 223KB Other download
41116_2023_36_Article_IEq649.gif 1KB Image download
41116_2023_36_Article_IEq684.gif 1KB Image download
41116_2023_36_Article_IEq686.gif 1KB Image download
41116_2023_36_Article_IEq688.gif 1KB Image download
41116_2023_36_Article_IEq689.gif 1KB Image download
MediaObjects/12888_2023_4753_MOESM2_ESM.pdf 487KB PDF download
41116_2023_36_Article_IEq696.gif 1KB Image download
41116_2023_36_Article_IEq698.gif 1KB Image download
41116_2023_36_Article_IEq699.gif 1KB Image download
41116_2023_36_Article_IEq706.gif 1KB Image download
MediaObjects/12888_2023_4761_MOESM1_ESM.docx 55KB Other download
41116_2023_36_Article_IEq708.gif 1KB Image download
41116_2023_36_Article_IEq710.gif 1KB Image download
41116_2023_36_Article_IEq716.gif 1KB Image download
41116_2023_36_Article_IEq793.gif 1KB Image download
Fig. 1 1795KB Image download
41116_2023_36_Article_IEq795.gif 1KB Image download
41116_2023_36_Article_IEq799.gif 1KB Image download
41116_2023_36_Article_IEq801.gif 1KB Image download
【 图 表 】

41116_2023_36_Article_IEq801.gif

41116_2023_36_Article_IEq799.gif

41116_2023_36_Article_IEq795.gif

Fig. 1

41116_2023_36_Article_IEq793.gif

41116_2023_36_Article_IEq716.gif

41116_2023_36_Article_IEq710.gif

41116_2023_36_Article_IEq708.gif

41116_2023_36_Article_IEq706.gif

41116_2023_36_Article_IEq699.gif

41116_2023_36_Article_IEq698.gif

41116_2023_36_Article_IEq696.gif

41116_2023_36_Article_IEq689.gif

41116_2023_36_Article_IEq688.gif

41116_2023_36_Article_IEq686.gif

41116_2023_36_Article_IEq684.gif

41116_2023_36_Article_IEq649.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  文献评价指标  
  下载次数:13次 浏览次数:3次