期刊论文详细信息
Nuclear Fushion
Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks
article
P. Rodriguez-Fernandez1  A.J. Creely2  M.J. Greenwald1  D. Brunner2  S.B. Ballinger1  C.P. Chrobak2  D.T. Garnier1  R. Granetz1  Z.S. Hartwig1  N.T. Howard1  J.W. Hughes1  J.H. Irby1  V.A. Izzo3  A.Q. Kuang1  Y. Lin1  E.S. Marmar1  R.T. Mumgaard2  C. Rea1  M.L. Reinke2  V. Riccardo2  J.E. Rice1  S.D. Scott2  B.N. Sorbom2  J.A. Stillerman1  R. Sweeney1  R.A. Tinguely1  D.G. Whyte1  J.C. Wright1  D.V. Yuryev2 
[1] MIT Plasma Science and Fusion Center;Commonwealth Fusion Systems;Fiat Lux
关键词: SPARC;    compact;    design;    high-field;    burning-plasma;    breakeven;   
DOI  :  10.1088/1741-4326/ac1654
来源: Institute of Physics Publishing Ltd.
PDF
【 摘 要 】

The SPARC tokamak project, currently in engineering design, aims to achievebreakevenand burning plasma conditions in a compact device, thanks to new developments in high-temperature superconductor technology. With a magnetic field of 12.2 T on axis and 8.7 MA of plasma current, SPARC is predicted to produce 140 MW of fusion power with a plasma gain ofQ≈ 11, providing ample margin with respect to its mission ofQ> 2. All tokamak systems are being designed to produce this landmark plasma discharge, thus enabling the study of burning plasma physics and tokamak operations in reactor relevant conditions to pave the way for the design and construction of a compact, high-field fusion power plant. Construction of SPARC is planned to begin by mid-2021.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307170000385ZK.pdf 3894KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次