期刊论文详细信息
Nuclear Fushion
Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond
article
F. Carpanese1  M. Carr2  L. Carraro3  A. Casolari4  F. Causa5  J. Čeřovský4  O. Chellaï1  P. Chmielewski6  D. Choi1  N. Christen7  G. Ciraolo8  L. Cordaro3  S. Costea9  N. Cruz1,10  A. Czarnecka6  A. Dal Molin1,11  P. David1,12  J. Decker1  H. De Oliveira1  D. Douai8  M.B. Dreval1,13  B. Dudson1,14  M. Dunne1,12  B.P. Duval1  T. Eich1,12  S. Elmore2  O. Embréus1,15  B. Esposito1,16  M. Faitsch1,12  M. Farník4  A. Fasoli1  N. Fedorczak8  F. Felici1  S. Feng1,11  X. Feng1,17  G. Ferró1,18  O. Février1  S. Coda1  M. Agostini3  R. Albanese1,19  S. Alberti1  E. Alessi5  S. Allan1,17  J. Allcock1,17  R. Ambrosino2,20  H. Anand2,21  Y. Andrèbe1  H. Arnichand1  F. Auriemma3  J.M. Ayllon-Guerola2,22  F. Bagnato1  J. Ball1  M. Baquero-Ruiz1  A.A. Beletskii1,13  M. Bernert1,12  W. Bin5  P. Blanchard1  T.C. Blanken2,24  J.A. Boedo2,25  O. Bogar4  T. Bolzonella3  F. Bombarda1,16  N. Bonanomi1,11  F. Bouquey8  C. Bowman1,14  D. Brida1,12  J. Bucalossi8  J. Buermans2,26  H. Bufferand8  P. Buratti1,16  G. Calabró2,27  L. Calacci1,18  Y. Camenen2,28  D. Carnevale1,18  O. Ficker4  A. Fil1,14  M. Fontana1  L. Frassinetti2,29  I. Furno1  D.S. Gahle3,30  D. Galassi1  K. Gałązka6  A. Gallo8  C. Galperti1  S. Garavaglia5  J. Garcia8  M. Garcia-Muñoz2,22  A.J. Garrido3,32  I. Garrido3,32  J. Gath3,33  B. Geiger3,34  G. Giruzzi8  M. Gobbin3  T.P. Goodman1  G. Gorini1,11  M. Gospodarczyk1,18  G. Granucci5  J.P. Graves1  M. Gruca6  T. Gyergyek3,35  A. Hakola3,36  T. Happel1,12  G.F. Harrer3,37  J. Harrison2  E. Havlíčková2  J. Hawke1  S. Henderson2  P. Hennequin3,38  L. Hesslow1,15  D. Hogeweij3,39  J.-Ph. Hogge1  C. Hopf1,12  M. Hoppe1,15  J. Horáček4  Z. Huang3,34  A. Hubbard4,40  A. Iantchenko1  V. Igochine1,12  P. Innocente3  C. Ionita Schrittwieser9  H. Isliker4,41  R. Jacquier1  A. Jardin4,42  A. Kappatou1,12  A. Karpushov1  P.-V. Kazantzidis4,43  D. Keeling2  N. Kirneva4,44  M. Komm4  M. Kong1  J. Kovacic3,35  N. Krawczyk6  O. Kudlacek1,12  T. Kurki-Suonio4,46  R. Kwiatkowski4,47  B. Labit1  E. Lazzaro5  B. Linehan4,40  B. Lipschultz1,14  X. Llobet1  R. Lombroni2,27  V.P. Loschiavo1,19  T. Lunt1,12  E. Macusova4  J. Madsen3,33  E. Maljaars2,24  P. Mantica5  M. Maraschek1,12  C. Marchetto5  A. Marco4,48  A. Mariani5  C. Marini4,49  Y. Martin1  F. Matos1,12  R. Maurizio1  B. Mavkov5,50  D. Mazon8  P. McCarthy5,51  R. McDermott1,12  V. Menkovski2,24  A. Merle1  H. Meyer2  D. Micheletti5  F. Militello2  K. Mitosinkova4  J. Mlynář4  V. Moiseenko1,13  P.A. Molina Cabrera1  J. Morales8  J.-M. Moret1  A. Moro5  R.T. Mumgaard4,40  V. Naulin3,33  R.D. Nem3,33  F. Nespoli2,28  A.H. Nielsen3,33  S.K. Nielsen3,33  M. Nocente1,11  S. Nowak5  N. Offeddu1  F.P. Orsitto1,19  R. Paccagnella3  A. Palha2,24  G. Papp1,12  A. Pau5,52  R.O. Pavlichenko1,13  A. Perek3,39  V. Pericoli Ridolfini6  F. Pesamosca1  V. Piergotti1,16  L. Pigatto3  P. Piovesan3  C. Piron3  V. Plyusnin1,10  E. Poli1,12  L. Porte1  G. Pucella1,16  M.E. Puiatti3  T. Pütterich1,12  M. Rabinski4,47  J. Juul Rasmussen3,33  T. Ravensbergen2,24  M. Reich1,12  H. Reimerdes1  F. Reimold5,53  C. Reux8  D. Ricci5  P. Ricci1  N. Rispoli5  J. Rosato2,28  S. Saarelma2  M. Salewski3,33  A. Salmi3,36  O. Sauter1  M. Scheffer2,24  Ch. Schlatter1  B.S. Schneider9  R. Schrittwieser9  S. Sharapov2  R.R. Sheeba2,28  U. Sheikh1  R. Shousha2,24  M. Silva1  J. Sinha2,21  C. Sozzi5  M. Spolaore3  L. Stipani1  P. Strand1,15  T. Tala3,36  A.S. Tema Biwole1  A.A. Teplukhina5,54  D. Testa1  C. Theiler1  A. Thornton2  G. Tomaž3,35  M. Tomes4  M.Q. Tran1  C. Tsironis4,43  C.K. Tsui1  J. Urban4  M. Valisa3  M. Vallar3  D. Van Vugt2,24  S. Vartanian8  O. Vasilovici9  K. Verhaegh1,14  L. Vermare3,38  N. Vianello3  E. Viezzer2,22  W.A.J. Vijvers3,39  F. Villone1,19  I. Voitsekhovitch2  N.M.T. Vu1  N. Walkden2  T. Wauters2,26  M. Weiland1,12  H. Weisen1  M. Wensing1  M. Wiesenberger3,33  G. Wilkie1,15  M. Wischmeier1,12  K. Wu2,27  M. Yoshida5,55  R. Zagorski6  P. Zanca3  J. Zebrowski4,47  A. Zisis5,56  M. Zuin3 
[1] Ecole Polytechnique Fédérale de Lausanne ,(EPFL), Swiss Plasma Center;CCFE, Culham Science Centre;Consorzio RFX;Institute of Plasma Physics AS CR;IFP-CNR;Institute of Plasma Physics and Laser Microfusion;Rudolf Peierls Centre for Theoretical Physics, University of Oxford;CEA;Institut für Ionen- und Angewandte Physik, Universität Innsbruck;Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa;Department of Physics ‘G. Occhialini’, University of Milano-Bicocca;Max-Planck-Institut für Plasmaphysik;Institute of Plasma Physics, National Science Center, Kharkov Institute of Physics and Technology;York Plasma Institute, Department of Physics, University of York;Department of Physics, Chalmers University of Technology;Unità Tecnica Fusione;Department of Physics, Durham University;University of Rome Tor Vergata;University of Napoli ‘Federico II’;University of Napoli Parthenope;ITER Organization;Centro Nacional de Aceleradores ,(CNA), Universidad de Sevilla;Department of Mechanical Engineering and Manufacturing, University of Seville;Eindhoven University of Technology;University of California, San Diego, Energy Research Center;Laboratory for Plasma Physics, Koninklijke Militaire School—Ecole Royale Militaire;Department of Economics, Engineering, Society and Business Organization ,(DEIm), University of Tuscia, Largo dell’Università snc;Aix-Marseille Université;Fusion Plasma Physics;Department of Physics SUPA, University of Strathclyde;Department of Atomic, Molecular and Nuclear Physics, University of Seville;Faculty of Engineering, University of the Basque Country;Department of Physics, Technical University of Denmark;Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald;Jožef Stefan Institute;VTT Technical Research Centre of Finland Ltd;Institute of Applied Physics;Laboratoire de Physique des Plasmas;FOM Institute DIFFER ‘Dutch Institute for Fundamental Energy Research’;Plasma Science and Fusion Center, Massachusetts Institute of Technology;Aristotle University of Thessaloniki;Institute of Nuclear Physics Polish Academy of Sciences;National Technical University of Athens;Institute of Physics of Tokamaks, National Research Center ‘Kurchatov Institute’;National Research Nuclear University MEPhI ,(Moscow Engineering Physics Institute);Department of Applied Physics, Aalto University;National Centre for Nuclear Research;Advanced Design & Analysis Department;General Atomics;Department of Electrical and Electronic Engineering, University of Melbourne;Department of Physics, University College Cork;Department of Electrical and Electronic Engineering, University of Cagliari;Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik;Princeton University, Princeton;National Institutes for Quantum and Radiological Science and Technology;Department of Physics, National and Kapodistrian University of Athens
关键词: nuclear fusion;    tokamak;    overview;    TCV;    MST1;    EUROfusion;   
DOI  :  10.1088/1741-4326/ab25cb
来源: Institute of Physics Publishing Ltd.
PDF
【 摘 要 】

The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high- Znoble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307170000212ZK.pdf 2874KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:1次