期刊论文详细信息
Nuclear Fushion
Overview of physics studies on ASDEX Upgrade
article
H. Meyer1  for the AUG Team: D. Aguiam2  C. Angioni3  C.G. Albert3  N. Arden3  R. Arredondo Parra3  O. Asunta5  M. de Baar6  M. Balden3  V. Bandaru3  K. Behler3  A. Bergmann3  J. Bernardo2  M. Bernert3  A. Biancalani3  R. Bilato3  G. Birkenmeier3  T.C. Blanken8  V. Bobkov3  A. Bock3  T. Bolzonella9  A. Bortolon1,10  B. Böswirth3  C. Bottereau1,11  A. Bottino3  H. van den Brand6  S. Brezinsek1,12  D. Brida3  F. Brochard1,13  C. Bruhn3  J. Buchanan1  A. Buhler3  A. Burckhart3  Y. Camenen1,14  D. Carlton3  M. Carr1  D. Carralero3  C. Castaldo1,16  M. Cavedon3  C. Cazzaniga9  S. Ceccuzzi1,16  C. Challis1  A. Chankin3  S. Chapman1,17  C. Cianfarani1,16  F. Clairet1,11  S. Coda1,18  R. Coelho2  J.W. Coenen1,12  L. Colas1,11  G.D. Conway3  S. Costea1,19  D.P. Coster3  T.B. Cote2,20  A. Creely2,21  G. Croci2,22  G. Cseh2,23  A. Czarnecka2,24  I. Cziegler2,25  O. D’Arcangelo1,16  P. David3  C. Day2,26  R. Delogu2,22  P. de Marné3  S.S. Denk3  P. Denner1,12  M. Dibon3  A. Di Siena3  D. Douai1,11  A. Drenik3  R. Drube3  M. Dunne3  B.P. Duval1,18  R. Dux3  T. Eich3  S. Elgeti3  K. Engelhardt3  B. Erdös2,23  I. Erofeev3  B. Esposito1,16  E. Fable3  M. Faitsch3  U. Fantz3  H. Faugel3  I. Faust3  F. Felici1,18  J. Ferreira2  S. Fietz3  A. Figuereido2  R. Fischer3  O. Ford2,27  L. Frassinetti2,28  S. Freethy3  M. Fröschle3  G. Fuchert2,27  J.C. Fuchs3  H. Fünfgelder3  K. Galazka2,24  J. Galdon-Quiroga3  A. Gallo1,11  Y. Gao1,12  S. Garavaglia2,22  A. Garcia-Carrasco2,28  M. Garcia-Muñoz2,29  B. Geiger2,27  L. Giannone3  L. Gil2  E. Giovannozzi1,16  C. Gleason-González2,26  S. Glöggler3  M. Gobbin9  T. Görler3  I. Gomez Ortiz3  J. Gonzalez Martin2,29  T. Goodman1,18  G. Gorini3,30  D. Gradic2,27  A. Gräter3  G. Granucci2,22  H. Greuner3  M. Griener3  M. Groth5  A. Gude3  S. Günter3  L. Guimarais2  G. Haas3  A.H. Hakola3,31  C. Ham1  T. Happel3  N. den Harder3  G.F. Harrer3,32  J. Harrison1  V. Hauer2,26  T. Hayward-Schneider3  C.C. Hegna2,20  B. Heinemann3  S. Heinzel3,33  T. Hellsten3,34  S. Henderson1  P. Hennequin3,35  A. Herrmann3  M.F. Heyn4  E. Heyn3,36  F. Hitzler3  J. Hobirk3  K. Höfler3  M. Hölzl3  T. Höschen3  J.H. Holm3,37  C. Hopf3  W.A. Hornsby3  L. Horvath3,38  A. Houben1,13  A. Huber1,12  V. Igochine3  T. Ilkei2,23  I. Ivanova-Stanik2,24  W. Jacob3  A.S. Jacobsen3  F. Janky3  A. Jansen van Vuuren2,27  A. Jardin3,39  F. Jaulmes6  F. Jenko3  T. Jensen3,37  E. Joffrin1,11  C.-P. Käsemann3  A. Kallenbach3  S. Kálvin2,23  M. Kantor6  A. Kappatou3  O. Kardaun3  J. Karhunen6  S. Kasilov4  Y. Kazakov4,42  W. Kernbichler4  A. Kirk1  S. Kjer Hansen3  V. Klevarova4,43  G. Kocsis2,23  A. Köhn3  M. Koubiti1,14  K. Krieger3  A. Krivska4,42  A. Krämer-Flecken1,12  O. Kudlacek3  T. Kurki-Suonio5  B. Kurzan3  B. Labit1,18  K. Lackner3  F. Laggner3,32  P.T. Lang3  P. Lauber3  A. Lebschy3  N. Leuthold3  M. Li3  O. Linder3  B. Lipschultz2,25  F. Liu4,44  Y. Liu1  A. Lohs3  Z. Lu3  T. Luda di Cortemiglia3  N.C. Luhmann4,45  R. Lunsford1,10  T. Lunt3  A. Lyssoivan4,42  T. Maceina3  J. Madsen3,37  R. Maggiora4,46  H. Maier3  O. Maj3  J. Mailloux1  R. Maingi1,10  E. Maljaars8  P. Manas3  A. Mancini2,22  A. Manhard3  M.-E. Manso2  P. Mantica2,22  M. Mantsinen4,47  P. Manz3  M. Maraschek3  C. Martens3  P. Martin9  L. Marrelli9  A. Martitsch4  M. Mayer3  D. Mazon1,11  P.J. McCarthy4,49  R. McDermott3  H. Meister3  A. Medvedeva3  R. Merkel3  A. Merle1,18  V. Mertens3  D. Meshcheriakov3  O. Meyer1,11  J. Miettunen6  D. Milanesio4,46  F. Mink3  A. Mlynek3  F. Monaco3  C. Moon3  F. Nabais2  A. Nemes-Czopf2,24  G. Neu3  R. Neu3  A.H. Nielsen3,37  S.K. Nielsen3,37  V. Nikolaeva3  M. Nocente3,30  J.-M. Noterdaeme3  I. Novikau3  S. Nowak1,18  M. Oberkofler3  M. Oberparleiter5,51  R. Ochoukov3  T. Odstrcil3  J. Olsen3,37  F. Orain3  F. Palermo3  O. Pan3  G. Papp3  I. Paradela Perez5  A. Pau5,52  G. Pautasso3  F. Penzel3  P. Petersson3,31  J. Pinzón Acosta3  P. Piovesan9  C. Piron9  R. Pitts4,44  U. Plank3  B. Plaum3,36  B. Ploeckl3  V. Plyusnin2  G. Pokol4,42  E. Poli3  L. Porte1,18  S. Potzel3  D. Prisiazhniuk3  T. Pütterich3  M. Ramisch3,36  J. Rasmussen3,37  G.A. Rattá1,15  S. Ratynskaia2,28  G. Raupp3  G.L. Ravera1,16  D. Réfy2,23  M. Reich3  F. Reimold1,12  D. Reiser1,12  T. Ribeiro3  J. Riesch3  R. Riedl3  D. Rittich3  J.F. Rivero-Rodriguez2,29  G. Rocchi1,16  M. Rodriguez-Ramos2,29  V. Rohde3  A. Ross3  M. Rott3  M. Rubel2,28  D. Ryan1  F. Ryter3  S. Saarelma1  M. Salewski3,37  A. Salmi5  L. Sanchis-Sanchez2,29  J. Santos2  O. Sauter1,18  A. Scarabosio3  G. Schall3  K. Schmid3  O. Schmitz4,47  P.A. Schneider3  R. Schrittwieser1,19  M. Schubert3  T. Schwarz-Selinger3  J. Schweinzer3  B. Scott3  T. Sehmer3  E. Seliunin2  M. Sertoli3  A. Shabbir4,43  A. Shalpegin1,18  L. Shao5,53  S. Sharapov1  G. Sias5,52  M. Siccinio3  B. Sieglin3  A. Sigalov3  A. Silva2  C. Silva2  D. Silvagni3  P. Simon3  J. Simpson1  E. Smigelskis3  A. Snicker5  C. Sommariva1,11  C. Sozzi2,22  M. Spolaore9  A. Stegmeir3  M. Stejner3,37  J. Stober3  U. Stroth3  E. Strumberger3  G. Suarez3  H.-J. Sun3  W. Suttrop3  E. Sytova3  T. Szepesi2,23  B. Tál3  T. Tala3,31  G. Tardini3  M. Tardocchi2,22  M. Teschke3  D. Terranova9  W. Tierens3  E. Thorén2,28  D. Told3  P. Tolias2,28  O. Tudisco1,16  W. Treutterer3  E. Trier3  M. Tripský4,42  M. Valisa9  M. Valovic1  B. Vanovac3  D. van Vugt8  S. Varoutis2,26  G. Verdoolaege4,42  N. Vianello9  J. Vicente2  T. Vierle3  E. Viezzer2,29  U. von Toussaint3  D. Wagner3  N. Wang1,11  X. Wang3  M. Weiland3  A.E. White2,21  S. Wiesen1,12  M. Willensdorfer3  B. Wiringer3  M. Wischmeier3  R. Wolf2,27  E. Wolfrum3  L. Xiang5,53  Q. Yang5,53  Z. Yang3  Q. Yu3  R. Zagórski2,24  I. Zammuto3  W. Zhang3  M. van Zeeland3,34  T. Zehetbauer3  M. Zilker3  S. Zoletnik2,23  H. Zohm3 
[1] United Kingdom Atomic Energy Authority ,(CCFE), Culham Science Centre;Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa;Max-Planck-Institut für Plasmaphysik;Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics;Department of Applied Physics, Aalto University;DIFFER—Dutch Institute for Fundamental Energy Research;Physik-Department E28, Technische Universität München;Eindhoven University of Technology PO Box 513;Consorzio RFX;Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton;CEA;Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik;Institut Jean Lamour, Université de Lorraine;CNRS, Aix-Marseille Université;Laboratorio Nacional de Fusión;ENEA;Department of Physics, Centre for Fusion, Space and Astrophysics, Warwick University;Ecole Polytechnique Fédérale de Lausanne ,(EPFL), Swiss Plasma Center;Institute for Ion Physics and Applied Physics, Universität Innsbruck;Department of Engineering Physics, University of Wisconsin-Madison;Plasma Science and Fusion Center;IFP-CNR;Wigner Research Centre for Physics;Institute of Plasma Physics and Laser Microfusion;Department of Physics, York Plasma Institute, University of York;Karlsruhe Institute of Technology;Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald;Fusion Plasma Physics;Department of Atomic, Molecular and Nuclear Physics, University of Seville;Dipartimento di Fisica, Università di Milano-Bicocca;VTT Technical Research Centre of Finland;Institute of Applied Physics, Technische Universität Wien;Max-Planck Computing and Data Facility;General Atomics;Laboratoire de Physique des Plasmas;Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie;Department of Physics, Technical University of Denmark;Institute of Nuclear Techniques, Budapest University of Technology and Economics;Institute of Nuclear Physics Polish Academy of Sciences;Institute of Plasma Physics AS CR;Institute of Plasma Physics, National Science Center Kharkov Institute of Physics and Technology;Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire Renaissancelaan 30 Avenue de la Renaissance B-1000;Department of Applied Physics UG ,(Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent;ITER Organization;University of California at Davis;Dipartimento di Elettronica e Telecomunicazioni;Barcelona Supercomputing Center;ICREA, Pg. Lluís Companys 23;Physics Department, University College Cork;Fakultät Maschinenwesen, Technische Universität München;Department of Earth and Space Sciences, Chalmers University of Technology;Department of Electrical and Electronic Engineering, University of Cagliari;Institute of Plasma Physics, Chinese Academy of Sciences;EUROfusion PPP&T
关键词: nuclear fusion;    magnetic confinement;    tokamak physics;    ITER;    DEMO;   
DOI  :  10.1088/1741-4326/ab18b8
来源: Institute of Physics Publishing Ltd.
PDF
【 摘 要 】

The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation ( q 95  =  5.5,) at low density. Higher installed electron cyclotron resonance heating power  6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG.Stable high-density H-modes with MW m−1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently. This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated.Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of andE r allow for inter ELM transport analysis confirming thatE r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using-feedback.Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle—measured for the first time—or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307170000206ZK.pdf 8915KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次