期刊论文详细信息
Journal of Data Science
Predicting Students’ Problem Solving Performance using Support Vector Machine
article
Young-Jin Lee1 
[1] Educational Technology Program, University of Kansas
关键词: Bayesian Knowledge Tracing;    Log File Analysis;    Educational Data Mining;   
DOI  :  10.6339/JDS.201604_14(2).0003
学科分类:土木及结构工程学
来源: JDS
PDF
【 摘 要 】

This study investigates whether Support Vector Machine (SVM) can be used to predict the problem solving performance of students in the computerbased learning environment. The SVM models using RBF, linear, polynomial and sigmoid kernels were developed to estimate the probability for middle school students to get mathematics problems correct at their first attempt without using hints available in the computer-based learning environment based on their problem solving performance observed in the past. The SVM models showed better predictions than the standard Bayesian Knowledge Tracing (BKT) model, one of the most widely used prediction models in educational data mining research, in terms of Area Under the receiver operating characteristic Curve (AUC). Four SVM models got AUC values from 0.73 to 0.77, which is approximately 29% improvement, compared to the standard BKT model whose AUC was 0.58.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150000241ZK.pdf 691KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次