Journal of Applied & Computational Mathematics | |
Symmetric 2-Step 4-Point Hybrid Method for the Solution of General Third Order Differential Equations | |
article | |
Kayode SJ1  Obarhua FO1  | |
[1] Department of Mathematical Sciences, Federal University of Technology | |
关键词: Symmetric; Hybrid method; Power series and exponential function; Continuous predictor-corrector method; | |
DOI : 10.4172/2168-9679.1000348 | |
来源: Hilaris Publisher | |
【 摘 要 】
This research considers a symmetric hybrid continuous linear multistep method for the solution of general third order ordinary differential equations. The method is generated by interpolation and collocation approach using a combination of power series and exponential function as basis function. The approximate basis function is interpolated at both grid and off-grid points but the collocation of the differential function is only at the grid points. The derived method was found to be symmetric, consistent, zero stable and of order six with low error constant. Accuracy of the method was confirmed by implementing the method on linear and non-linear test problems. The results show better performance over known existing methods solved with the same third order problems.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307140004393ZK.pdf | 499KB | download |