期刊论文详细信息
Khayyam Journal of Mathematics
On φ-δ-S-primary ideals of commutative rings
article
Ameer Jaber1 
[1] Department of Mathematics, Faculty of Science, The Hashemite University
关键词: Prime ideal;    $S$-Prime ideal;    $\delta$-Primary ideal;    $\phi$-$\delta$-Primary ideal;   
DOI  :  10.22034/kjm.2022.350492.2590
学科分类:公共、环境与职业健康
来源: Ferdowsi University of Mashhad
PDF
【 摘 要 】

Let $R$ be a commutative ring with unity $(1\not=0)$ and let $\mathfrak{J}(R)$ be the set of all ideals of $R$. Let $\phi:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)\cup\{\emptyset\}$ be a reduction function of ideals of $R$ and let $\delta:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)$ be an expansion function of ideals of $R$. We recall that a proper ideal $I$ of $R$ is called a $\phi$-$\delta$-primary ideal of $R$ if whenever $a,b\in R$ and $ab\in I-\phi(I)$, then $a\in I$ or $b\in\delta(I)$. In this paper, we introduce a new class of ideals that is a generalization to the class of $\phi$-$\delta$-primary ideals. Let $S$ be a multiplicative subset of $R$ such that $1\in S$ and let $I$ be a proper ideal of $R$ with $S\cap I=\emptyset$, then $I$ is called a $\phi$-$\delta$-$S$-primary ideal of $R$ associated to $s\in S$ if whenever $a,b\in R$ and $ab\in I-\phi(I)$, then $sa\in I$ or $sb\in\delta(I)$. In this paper, we have presented a range of different examples, properties, characterizations of this new class of ideals.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202307120001194ZK.pdf 249KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次