Khayyam Journal of Mathematics | |
On φ-δ-S-primary ideals of commutative rings | |
article | |
Ameer Jaber1  | |
[1] Department of Mathematics, Faculty of Science, The Hashemite University | |
关键词: Prime ideal; $S$-Prime ideal; $\delta$-Primary ideal; $\phi$-$\delta$-Primary ideal; | |
DOI : 10.22034/kjm.2022.350492.2590 | |
学科分类:公共、环境与职业健康 | |
来源: Ferdowsi University of Mashhad | |
【 摘 要 】
Let $R$ be a commutative ring with unity $(1\not=0)$ and let $\mathfrak{J}(R)$ be the set of all ideals of $R$. Let $\phi:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)\cup\{\emptyset\}$ be a reduction function of ideals of $R$ and let $\delta:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)$ be an expansion function of ideals of $R$. We recall that a proper ideal $I$ of $R$ is called a $\phi$-$\delta$-primary ideal of $R$ if whenever $a,b\in R$ and $ab\in I-\phi(I)$, then $a\in I$ or $b\in\delta(I)$. In this paper, we introduce a new class of ideals that is a generalization to the class of $\phi$-$\delta$-primary ideals. Let $S$ be a multiplicative subset of $R$ such that $1\in S$ and let $I$ be a proper ideal of $R$ with $S\cap I=\emptyset$, then $I$ is called a $\phi$-$\delta$-$S$-primary ideal of $R$ associated to $s\in S$ if whenever $a,b\in R$ and $ab\in I-\phi(I)$, then $sa\in I$ or $sb\in\delta(I)$. In this paper, we have presented a range of different examples, properties, characterizations of this new class of ideals.
【 授权许可】
CC BY-NC
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307120001194ZK.pdf | 249KB | download |