期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids
article
Kevin Morand1 
[1] Department of Physics, Sogang University;Center for Quantum Spacetime, Sogang University
关键词: deformation quantization;    Kontsevich's graphs;    Lie bialgebroids;    Grothendieck-Teichmüller group.;   
DOI  :  10.3842/SIGMA.2022.020
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Universal solutions to deformation quantization problems can be conveniently classified by the cohomology of suitable graph complexes. In particular, the deformation quantizations of (finite-dimensional) Poisson manifolds and Lie bialgebras are characterised by an action of the Grothendieck-Teichmüller group via one-colored directed and oriented graphs, respectively. In this note, we study the action of multi-oriented graph complexes on Lie bialgebroids and their ''quasi'' generalisations. Using results due to T. Willwacher and M. Zivković on the cohomology of (multi)-oriented graphs, we show that the action of the Grothendieck-Teichmüller group on Lie bialgebras and quasi-Lie bialgebras can be generalised to quasi-Lie bialgebroids via graphs with two colors, one of them being oriented. However, this action generically fails to preserve the subspace of Lie bialgebroids. By resorting to graphs with two oriented colors, we instead show the existence of an obstruction to the quantization of a generic Lie bialgebroid in the guise of a new $\mathsf{Lie}_\infty$-algebra structure non-trivially deforming the ''big bracket'' for Lie bialgebroids. This exotic $\mathsf{Lie}_\infty$-structure can be interpreted as the equivalent in $d=3$ of the Kontsevich-Shoikhet obstruction to the quantization of infinite-dimensional Poisson manifolds (in $d=2$). We discuss the implications of these results with respect to a conjecture due to P. Xu regarding the existence of a quantization map for Lie bialgebroids.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307120000593ZK.pdf 851KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次