期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
article
Stjepan Meljanac1  Zoran Škoda2 
[1] Theoretical Physics Division, Institute Rudjer Bošković;Faculty of Science, University of Hradec Kr´alov´e
关键词: deformation quantization;    Hopf algebroid;    noncommutative phase space;    Drinfeld twist;    linear Poisson structure;   
DOI  :  10.3842/SIGMA.2018.026
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

In our earlier article [ Lett. Math. Phys. 107 (2017), 475-503], we explicitly described a topological Hopf algebroid playing the role of the noncommutative phase space of Lie algebra type. Ping Xu has shown that every deformation quantization leads to a Drinfeld twist of the associative bialgebroid of $h$-adic series of differential operators on a fixed Poisson manifold. In the case of linear Poisson structures, the twisted bialgebroid essentially coincides with our construction. Using our explicit description of the Hopf algebroid, we compute the corresponding Drinfeld twist explicitly as a product of two exponential expressions.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000938ZK.pdf 482KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:1次