期刊论文详细信息
PeerJ
Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory
article
Jiarui Wang1  Jinhua Tian1  Renning Hao1  Lili Tian2  Qiang Liu1 
[1] Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning Province;Department of Psychology, University of Jyväskylä
关键词: Right DLPFC;    tDCS;    Working memory;    n-back;    Maintenance;    Updating;   
DOI  :  10.7717/peerj.4906
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

Background Working memory, as a complex system, consists of two independent components: manipulation and maintenance process, which are defined as executive control and storage process. Previous studies mainly focused on the overall effect of transcranial direct current stimulation (tDCS) on working memory. However, little has been known about the segregative effects of tDCS on the sub-processes within working memory. Method Transcranial direct current stimulation, as one of the non-invasive brain stimulation techniques, is being widely used to modulate the cortical activation of local brain areas. This study modified a spatial n-back experiment with anodal and cathodal tDCS exertion on the right dorsolateral prefrontal cortex (DLPFC), aiming to investigate the effects of tDCS on the two sub-processes of working memory: manipulation (updating) and maintenance. Meanwhile, considering the separability of tDCS effects, we further reconfirmed the causal relationship between the right DLPFC and the sub-processes of working memory with different tDCS conditions. Results The present study showed that cathodal tDCS on the right DLPFC selectively improved the performance of the modified 2-back task in the difficult condition, whereas anodal tDCS significantly reduced the performance of subjects and showed an speeding-up tendency of response time. More precisely, the results of discriminability index and criterion showed that only cathodal tDCS enhanced the performance of maintenance in the difficult condition. Neither of the two tDCS conditions affected the performance of manipulation (updating). Conclusion These findings provide evidence that cathodal tDCS of the right DLPFC selectively affects maintenance capacity. Besides, cathodal tDCS also serves as an interference suppressor to reduce the irrelevant interference, thereby indirectly improving the working memory capacity. Moreover, the right DLPFC is not the unique brain regions for working memory manipulation (updating).

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100012482ZK.pdf 1451KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:4次