PeerJ | |
Measuring inter-individual differences in behavioural types of gilthead seabreams in the laboratory using deep learning | |
article | |
Marco Signaroli1  Arancha Lana1  Martina Martorell-Barceló1  Javier Sanllehi1  Margarida Barcelo-Serra1  Eneko Aspillaga1  Júlia Mulet1  Josep Alós1  | |
[1] Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados | |
关键词: Deep learning; Faster R-CNN; Fish behavioural ecology; Fish tracking; Sparus aurata; | |
DOI : 10.7717/peerj.13396 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Inra | |
【 摘 要 】
Deep learning allows us to automatize the acquisition of large amounts of behavioural animal data with applications for fisheries and aquaculture. In this work, we have trained an image-based deep learning algorithm, the Faster R-CNN (Faster region-based convolutional neural network), to automatically detect and track the gilthead seabream, Sparus aurata, to search for individual differences in behaviour. We collected videos using a novel Raspberry Pi high throughput recording system attached to individual experimental behavioural arenas. From the continuous recording during behavioural assays, we acquired and labelled a total of 14,000 images and used them, along with data augmentation techniques, to train the network. Then, we evaluated the performance of our network at different training levels, increasing the number of images and applying data augmentation. For every validation step, we processed more than 52,000 images, with and without the presence of the gilthead seabream, in normal and altered (i.e., after the introduction of a non-familiar object to test for explorative behaviour) behavioural arenas. The final and best version of the neural network, trained with all the images and with data augmentation, reached an accuracy of 92,79% ± 6.78% [89.24–96.34] of correct classification and 10.25 ± 61.59 pixels [6.59-13.91] of fish positioning error. Our recording system based on a Raspberry Pi and a trained convolutional neural network provides a valuable non-invasive tool to automatically track fish movements in experimental arenas and, using the trajectories obtained during behavioural tests, to assay behavioural types.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307100004079ZK.pdf | 5287KB | download |