Applicable Analysis and Discrete Mathematics | |
SOME COMBINATORIAL IDENTITIES OF THE $r$-WHITNEY-EULERIAN NUMBERS | |
article | |
Toufik Mansour1  Jose L. Ramirez2  Mark Shattuck3  Sergio N. Villamarin4  | |
[1] Department of Mathematics, University of Haifa;Departamento de Matem´aticas, Universidad Nacional de Colombia;Institute for Computational Science & Faculty of Mathematics and Statistics, Ton Duc Thang University;Department of Mathematics, Tulane University | |
关键词: Euler-Frobenius fraction; r-Whitney-Eulerian number; Eulerian number; combinatorial identity; | |
DOI : 10.2298/AADM180420012M | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Univerzitet u Beogradu * Elektrotehnicki Fakultet / University of Belgrade, Faculty of Electrical Engineering | |
【 摘 要 】
In this paper, we study further properties of a recently introduced generalized Eulerian number, denoted by Am,r(n, k), which reduces to the classicalEulerian number when m = 1 and r = 0. Among our results is a generalization of an earlier symmetric Eulerian number identity of Chung, Grahamand Knuth. Using the row generating function for Am,r(n, k) for a fixed n,we introduce the r-Whitney-Euler-Frobenius fractions, which generalize theEuler-Frobenius fractions. Finally, we consider a further four-parameter combinatorial generalization of Am,r(n, k) and find a formula for its exponentialgenerating function in terms of the Lambert-W function.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307080003735ZK.pdf | 419KB | download |