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In this paper, we study further properties of a recently introduced general-

ized Eulerian number, denoted by Am,r(n, k), which reduces to the classical

Eulerian number when m = 1 and r = 0. Among our results is a general-

ization of an earlier symmetric Eulerian number identity of Chung, Graham

and Knuth. Using the row generating function for Am,r(n, k) for a fixed n,

we introduce the r-Whitney-Euler-Frobenius fractions, which generalize the

Euler-Frobenius fractions. Finally, we consider a further four-parameter com-

binatorial generalization of Am,r(n, k) and find a formula for its exponential

generating function in terms of the Lambert-W function.

1. Introduction

Recall that the r-Whitney numbers of the second kind Wm,r(n, k) (see, e.g.,
[17]) are defined as connection constants in the polynomial identities

(mx+ r)n =

n∑
k=0

mkWm,r(n, k)xk, n ≥ 0,(1)

where xn = x(x−1) · · · (x−n+1) if n ≥ 1 with x0 = 1. Note that when m = 1 and
r = 0, the Wm,r(n, k) reduce to the classical Stirling numbers of the second kind.
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Given variables m and r, let Am,r(n, k) denote the r-Whitney-Eulerian numbers
defined by Mező and Ramı́rez [19] by the expression

Am,r(n, k) =

k∑
j=0

(−1)k−jmjj!

(
n− j
k − j

)
Wm,r(n, j).(2)

Observe that if (m, r) = (1, 0), we recover the classical Eulerian numbers A(n, k).
Additionally, if (m, r) = (1, r), we obtain the cumulative numbers studied by
Dwyer [10, 11], see also the Euler-Frobenius numbers considered by Gawronski
and Neuschel [13]. If (m, r) = (q + 1, 1), one obtains the q-Eulerian numbers
studied by Brenti [3].

One can show that the r-Whitney-Eulerian numbers satisfy the recurrence
relation

Am,r(n, k) = (mk + r)Am,r(n− 1, k) + (m(n− k + 1)− r)Am,r(n− 1, k − 1),
(3)

with Am,r(0, 0) = 1 and Am,r(n, k) = 0 if k > n or k < 0. For a similar class of
Eulerian numbers connected to the Whitney numbers, see the papers of Rahmani
[21] and Mező [18]. Note that the Am,r(n, k) are given explicitly by (see [22,
Theorem 6])

(4) Am,r(n, k) =

k∑
i=0

(−1)i ((k − i)m+ r)
n

(
n+ 1

i

)
, 0 ≤ k ≤ n,

which reduces to the well-known Eulerian number identity (cf. [8, p. 243])

A(n, k) =

k∑
i=0

(−1)i(k − i)n
(
n+ 1

i

)
when m = 1 and r = 0.

The Eulerian number A(n, k) has a combinatorial interpretation in that it
enumerates the subset of permutations π = π1π2 · · ·πn of [n] = {1, 2, . . . , n} whose
members have exactly k − 1 descents, where a descent corresponds to an index
i ∈ [n − 1] such that πi > πi+1. Using this interpretation, one can show the
recurrence (cf. [8])

A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n− 1, k), n, k ≥ 2,(5)

with A(n, 1) = 1 for n ≥ 1. Further properties of this sequence can be found in
the texts [8, 20]. Note that in the final section of the current paper, we provide a
combinatorial interpretation for a couple of polynomial generalizations of A(n, k)
in terms of statistics on certain classes of permutations.

The r-Whitney-Eulerian numbers are related to the generalized Eulerian
numbers Âm,r(n, k) defined by Xiong et al. [25] by the formula Am,r(n, n−k−1) =
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Âm,r(n, k). This together with Lemmas 7 and 8 from [25] gives

(mx+ r)n =

n∑
k=0

Am,r(n, k)

(
x+ n− k

n

)

=

n+1∑
k=1

Am,r(n, n− k + 1)

(
x+ k − 1

n

)
, n ≥ 0.

These identities provide a generalization of the Worpitzky’s identity for the Eulerian
numbers, namely,

xn =

n∑
k=0

(
x+ k − 1

n

)
A(n, k), n ≥ 0,

see, e.g., [14, Eqn. 6.37].

The organization of this paper is as follows. In the next section, we find
analogues of an Eulerian number identity originally shown by Chung et al. [7],
where it was requested to seek extensions of their result. In the subsequent section,
we establish connections between Am,r(n, k) and generalized harmonic numbers
and Stirling numbers of the first kind. In the fourth section, we introduce the r-
Whitney-Euler-Frobenius fractions, which are defined in terms of the generalized
Eulerian polynomials

∑n
k=0Am,r(n, k)xk, and establish some basic properties. In

the final section, we consider a further four-parameter polynomial generalization,
denoted by A(n, k; a, b, c, d), of the Eulerian numbers and also a related sequence.
The Am,r(n, k) will be seen to correspond to the special case of A(n, k; a, b, c, d)
when a = m, b = m+ r, c = m, d = m− r. We provide a combinatorial interpreta-
tion for A(n, k; a, b, c, d) and an expression for the exponential generating function
(e.g.f.) is found in terms of the Lambert-W function by solving explicitly a certain
multi-parameter linear partial differential equation.

2. A Special Quasi-Symmetric Identity

In this section, we generalize to Am,r(n, k) a previous identity for the classical
Eulerian numbers. It was shown in [7] that for positive integers a and b,

a+b∑
n=b−1

E(n, b− 1)

(
a+ b

n

)
=

a+b∑
n=a−1

E(n, a− 1)

(
a+ b

n

)
,(6)

where E(n, k) denotes the number of permutations of [n] with k descents, with
E(0, 0) = 0. A q-version of this identity was given by Han et al. [15] and here we
establish an analogue of (6) for Am,r(n, k). To do so, we extend and modify a proof
from [7] and consider a more general sum involving a third parameter c. First, we
will need a formula for a certain type of binomial convolution.
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Lemma 1. If a, b, c ∈ Z with |c| ≤ a, b, then

a+b∑
n=a−c

Am,r(n, a− c)
(
a+ b

n

)
= X − Y,

where

X :=

b+c∑
`=0

(
a+ b+ 1

`

)
((b+ c+ 1− `)m− r)a+b−`

(1− (b+ c+ 1− `)m+ r)`,

Y :=

b+c−1∑
`=0

(
a+ b

`

)
((b+ c− `)m− r)a+b−`−1

(1− (b+ c− `)m+ r)`.

Proof. We have

a+b∑
n=a−c

Am,r(n, a− c)
(
a+ b

n

)
=

b+c∑
n=0

Am,r(a+ b− n, a− c)
(

a+ b

a+ b− n

)

=

b+c∑
n=0

((
a+ b+ 1

a+ b− n+ 1

)
−
(

a+ b

a+ b− n+ 1

))
Am,r(a+ b− n, a− c).

Let

X =

b+c∑
n=0

(
a+ b+ 1

a+ b− n+ 1

)
Am,r(a+ b− n, a− c)

=

b+c∑
n=0

(
a+ b+ 1

a+ b− n+ 1

)
Âm,r(a+ b− n, b+ c− 1− n),

Y =

b+c∑
n=0

(
a+ b

a+ b− n+ 1

)
Am,r(a+ b− n, a− c)

=

b+c∑
n=0

(
a+ b

a+ b− n+ 1

)
Âm,r(a+ b− n, b+ c− 1− n),

where Âm,r(n, k) is the generalized Eulerian number of Xiong et al. [25]. This
sequence satisfies the following identity:

(7) Âm,r(n, k) =

k+1∑
i=0

(−1)i ((k + 2− i)m− r)n
(
n+ 1

i

)
.

From (7), the rearrangement of sums

n∑
k=0

n−k∑
j=0

f(k + j, j) =

n∑
p=0

p∑
j=0

f(p, j),
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and the fact
(
n
k+j

)(
k+j
j

)
=
(
n

n−k
)(
n−k
j

)
, we obtain

X =

b+c∑
n=0

(
a+ b+ 1

a+ b− n+ 1

)
b−n+c∑
j=0

(−1)j ((b− n+ c+ 1 − j)m− r)a+b−n

(
a+ b− n+ 1

j

)

=

b+c∑
n=0

b+c−n∑
j=0

(
a+ b+ 1

n+ j

)(
n+ j

j

)
(−1)j ((b+ c+ 1 − (n+ j))m− r)a+b−n

=

b+c∑
`=0

∑̀
j=0

(
a+ b+ 1

`

)(
`

j

)
(−1)j ((b+ c+ 1 − `)m− r)a+b−`+j

=

b+c∑
`=0

(
a+ b+ 1

`

)
((b+ c+ 1 − `)m− r)a+b−`

∑̀
j=0

(
`

j

)
(−1)j ((b+ c+ 1 − `)m− r)j

=

b+c∑
`=0

(
a+ b+ 1

`

)
((b+ c+ 1 − `)m− r)a+b−` (1 − (b+ c+ 1 − `)m+ r)`

and

Y =

b+c∑
n=0

b+c−n∑
j=0

(
a+ b

n+ j − 1

)(
n+ j − 1

j

)
(−1)j ((b+ c+ 1 − (n+ j))m− r)a+b−n

=

b+c∑
`=0

∑̀
j=0

(
a+ b

`− 1

)(
`− 1

j

)
(−1)j ((b+ c+ 1 − `)m− r)a+b−`+j

=

b+c∑
`=1

(
a+ b

`− 1

)
((b+ c+ 1 − `)m− r)a+b−`

`−1∑
j=0

(
`− 1

j

)
(−1)j ((b+ c+ 1 − `)m− r)j

=

b+c−1∑
`=0

(
a+ b

`

)
((b+ c− `)m− r)a+b−`−1 (1 − (b+ c− `)m+ r)` .

Lemma 2. With notation as in the previous lemma, we have the identities

X =
−1

r +m(a− c)

−
a−c∑
`=0

(
a+ b+ 1

`

)
(1 + r +m(a− c− `))a+b+1−`(−r −m(a− c− `))`−1,

Y =
−1

r +m(a− c)

−
a−c∑
`=0

(
a+ b

`

)
(1 + r +m(a− c− `))a+b−`(−r −m(a− c− `))`−1.
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Proof. We first recall the following binomial identity of Abel (cf. [23]): For n ≥ 1,
x 6= 0 and α real,

(x+ y)n

x
=

n∑
k=0

(
n

k

)
(y + αk)n−k(x− αk)k−1.

Substituting n = a+b+1, α = −m, x = −r−m(a−c), y = 1−x = 1+r+m(a−c),
we get

−1

r +m(a− c)
=

a−c∑
`=0

(
a+ b+ 1

`

)
(1+r+m(a−c−`))a+b+1−`(−r−m(a−c−`))`−1

+

a+b+1∑
`=a−c+1

(
a+ b+ 1

`

)
(1 + r +m(a− c− `))a+b+1−`(−r −m(a− c− `))`−1

=

a−c∑
`=0

(
a+ b+ 1

`

)
(1 + r +m(a− c− `))a+b+1−`(−r −m(a− c− `))`−1

+

b+c∑
`=0

(
a+ b+ 1

`

)
(1−m(b+ c+ 1− `) + r)`(m(b+ c+ 1− `)− r)a+b−`.

In the second sum, we have replaced the index ` with a + b + 1 − ` to obtain X,
which implies the first equality. Similarly, considering b − 1 in place of b in the
preceding yields the equality for Y .

We have the following extension of identity (6) for Am,r(n, k).

Theorem 3. Let a, b, c ∈ Z with |c| ≤ a, b and suppose 2r + 1 = (2c + 1)m. Let
α(`) := r +m(a− c− `) and α∗(`) := α(`+ 1). If c ≥ 0, then

a+b∑
n=b−c

Am,r(n, b− c)

(
a+ b

n

)
−

a+b∑
n=a−c

Am,r(n, a− c)

(
a+ b

n

)

=

a+c∑
`=a−c+1

(
a+ b+ 1

`

)
(1 + α(`))a+b−`(−α(`))`(8)

−
a+c−1∑
`=a−c

(
a+ b

`

)
(1 + α∗(`))a+b−`−1(−α∗(`))`.

If c < 0, then

a+b∑
n=b−c

Am,r(n, b− c)

(
a+ b

n

)
−

a+b∑
n=a−c

Am,r(n, a− c)

(
a+ b

n

)

=

a−c−1∑
`=a+c

(
a+ b

`

)
(1 + α∗(`))a+b−`−1(−α∗(`))`(9)

−
a−c∑

`=a+c+1

(
a+ b+ 1

`

)
(1 + α(`))a+b−`(−α(`))`.
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Proof. From the previous lemmas, we have

a+b∑
n=a−c

Am,r(n, a− c)
(
a+ b

n

)

= −
a−c∑
`=0

(
a+ b+ 1

`

)
(1 + α(`))a+b+1−`(−α(`))`−1

+

a−c∑
`=0

(
a+ b

`

)
(1 + α(`))a+b−`(−α(`))`−1

=

a−c∑
`=0

(
a+ b+ 1

`

)
(1 + α(`))a+b−`(−α(`))`−1(−1− α(`))

+

a−c∑
`=0

(
a+ b

`

)
(1 + α(`))a+b−`(−α(`))`−1

=

a−c∑
`=0

(
a+ b+ 1

`

)
(1 + α(`))a+b−`(−α(`))`

−
a−c∑
`=1

(
a+ b

`− 1

)
(1 + α(`))a+b−`(−α(`))`−1

=

a−c∑
`=0

(
a+ b+ 1

`

)
(1 + α(`))a+b−`(−α(`))`

−
a−c−1∑
`=0

(
a+ b

`

)
(1 + α∗(`))a+b−`−1(−α∗(`))`.

Interchanging the roles of a and b in Lemma 1 above, we obtain

a+b∑
n=b−c

Am,r(n, b− c)
(
a+ b

n

)

=

a+c∑
`=0

(
a+ b+ 1

`

)
((a+ c+ 1− `)m− r)a+b−`(1− (a+ c+ 1− `)m+ r)`

−
a+c−1∑
`=0

(
a+ b

`

)
((a+ c− `)m− r)a+b−`−1(1− (a+ c− `)m+ r)`.

Since 2r+ 1 = (2c+ 1)m, we have 1 + α(`) = (a+ c+ 1− `)m− r and 1 + α∗(`) =
(a + c − `)m − r. If c ≥ 0, then the two sums on the right-hand side of the
last equality contain 2c more terms than the corresponding sums in the equality
preceding it, and subtracting implies (8). If c < 0, then the sums on the right side
of the equality preceding the last contain −2c more terms and (9) follows.
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Taking c = 0 and c = 1 in Theorem 3 gives the following result.

Corollary 4. Let a, b ≥ 1. If m = 2r + 1, then

(10)

a+b∑
n=b

Am,r(n, b)

(
a+ b

n

)
=

a+b∑
n=a

Am,r(n, a)

(
a+ b

n

)
.

If m = 2t+ 1 and r = 3t+ 1, then

a+b∑
n=b−1

Am,r(n, b− 1)

(
a+ b

n

)
−

a+b∑
n=a−1

Am,r(n, a− 1)

(
a+ b

n

)

= (−1)a(t+ 1)bta−1

((
a+ b+ 1

a

)
t+

(
a+ b

a− 1

))
(11)

− (−1)b(t+ 1)atb−1

((
a+ b+ 1

b

)
t+

(
a+ b

b− 1

))
.

Remark: Note that (10) gives formula (6) above when r = 0 since A1,0(n, k) =
E(n, k − 1); hence it provides a polynomial generalization of (6). Formula (11) is
seen to provide an analogue of (6) for Am,r(n, k) when m = r = 1 and a, b > 1.

Comparing (4) and (7), we have the relation Am,r(n, k) = Âm,m−r(n, k − 1).

From this, one can obtain a comparable version of Theorem 3 for Âm,r(n, k). In
particular, we have the following.

Corollary 5. Let a, b ≥ 1. If m = 2r − 1, then

(12)

a+b∑
n=b

Âm,r(n, b− 1)

(
a+ b

n

)
=

a+b∑
n=a

Âm,r(n, a− 1)

(
a+ b

n

)
.

If m = −2r + 1, then

a+b∑
n=b−1

Âm,r(n, b− 2)

(
a+ b

n

)
−

a+b∑
n=a−1

Âm,r(n, a− 2)

(
a+ b

n

)
= rb−1(1− r)a

((
a+ b

b− 1

)
− r
(
a+ b+ 1

b

))
(13)

− ra−1(1− r)b
((

a+ b

a− 1

)
− r
(
a+ b+ 1

a

))
.

Remark: Formula (12) gives (6) when r = 1. Taking r = 0 in (13) yields an

analogue of (6) for Âm,r(n, k) when a, b > 1. Letting r = 1 in (13), we obtain
another symmetric identity:

a+b∑
n=b−1

Â−1,1(n, b− 2)

(
a+ b

n

)
=

a+b∑
n=a−1

Â−1,1(n, a− 2)

(
a+ b

n

)
, a, b ≥ 1.
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3. Identities Involving Combinatorial Sequences

In this section, we find some identities relating generalized Eulerian and har-
monic numbers and Stirling numbers of the first kind. We first recall some special
functions. Let Γ(z) denote the gamma function given by

Γ(z) :=

∫ ∞
0

e−ttz−1dt, Re(z) > 0.

Then the polygamma function ψ(n)(z) is defined as

ψ(n)(z) :=
dn+1

dzn+1
[log Γ(z)] =

dn

dzn
ψ(z), n ≥ 0, z /∈ Z−0 ,

where ψ(z) denotes the psi (or digamma) function (cf. [24]) and Z−0 is the set of
non-positive integers. The Hurwitz zeta function ζ(s, a) is defined as

ζ(s, a) :=

∞∑
k=0

1

(k + a)s
, Re(s) > 1, a /∈ Z−0 ,

the a = 1 case of which corresponds to the usual zeta function, ζ(s) = ζ(s, 1). The
polygamma and Hurwitz zeta functions are related by the following formula from
[24]:

ψ(n)(z) = (−1)n+1n!

∞∑
k=0

1

(k + z)n+1
= (−1)n+1n!ζ(n+ 1, z).(14)

We will also make use of the following differentiation formula (see, e.g., [6]):

d

dx

(
x+ k

n

)
=

(
x+ k

n

)
[ψ(x+ k + 1)− ψ(x+ k + 1− n)].(15)

Further properties of the special functions given above can be found in [24].

Extending arguments from [6], we have the following more general identities

involving Âm,r(n, k).

Theorem 6. If n ≥ 1, then

nm(m(x− 1) + r)n−1

=

n−1∑
k=−1

Âm,r(n, k)

(
x+ k

n

)
(ψ(x+ k + 1)− ψ(x+ k + 1− n))(16)

and

(17) nm2(n− 1)(m(x− 1) + r)n−2

=

n−1∑
k=−1

Âm,r(n, k)

(
x+ k

n

)[
(ψ(x+ k + 1)− ψ(x+ k + 1− n))2

+ζ(2, x+ k + 1)− ζ(2, x+ k + 1− n)] .
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Proof. Recall that the Âm,r(n, k) satisfy the following version of Worpitzky’s iden-
tity:

(m(x− 1) + r)n =

n−1∑
k=−1

Âm,r(n, k)

(
x+ k

n

)
, n ≥ 0,(18)

see [25, Lemma 7]. Differentiating both sides of (18) with respect to x, and using
(15), we obtain the first equality. Noting (14) and differentiating (18) twice with
respect to x yields the second equality.

Let
[
n
k

]
denote the (signless) Stirling number of the first kind, which can be

defined via the relation xn =
∑n
k=0

[
n
k

]
(−1)n−kxk for n ≥ 0. We have the following

identities involving
[
n
k

]
and Am,r(n, k).

Theorem 7. If n ≥ 0, then

(mx+ r)n =
1

n!

n∑
k=0

n∑
i=0

n∑
`=i

Am,r(n, k)

[
n

`

](
`

i

)
(1− k)ix`−i(19)

and

(mx+ r)n =
1

n!

n∑
k=0

n∑
i=0

n∑
`=i

(−1)n−`Am,r(n, k)

[
n

`

](
`

i

)
(n− k)ix`−i.(20)

Proof. Recall the formula (cf. [14]):
(
x+k
n

)
= (−1)n (−x−k+n−1)n

n! . From (18), we
then have

(m(x− 1) + r)n

=
(−1)n

n!

n−1∑
k=−1

Âm,r(n, k)(−x− k + n− 1)n

=
(−1)n

n!

n∑
k=0

n∑
`=0

Âm,r(n, k − 1)

[
n

`

]
(−1)n−`(−(x− 1) + n− 1− k)`

=
1

n!

n∑
k=0

n∑
`=0

Âm,r(n, k − 1)

[
n

`

]
((x− 1) + k − n+ 1)`

=
1

n!

n∑
k=0

n∑
i=0

n∑
`=i

Âm,r(n, k − 1)

[
n

`

](
`

i

)
(k − n+ 1)i(x− 1)`−i,

where we have applied the binomial theorem and interchanged summation to obtain
the last equality. Replacing k with n−k in the outer sum, noting Âm,r(n, n−k−1) =
Am,r(n, k) and changing x − 1 to x then gives (19). To show (20), we proceed in

a similar manner as before, but instead write
(
x+k
n

)
= (−1)n (−x−k)n

n! as the first
step, where yn = y(y + 1) · · · (y + n− 1).
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Remark: The m = 1, r = 0 case of (19) is seen to be equivalent to the Eulerian
number identity given in [6, Eqn. 2.16] (upon replacing k with n − k), while the
comparable case of (20) seems to be new.

Let H
(m)
n denote the generalized harmonic number of order m given by

H
(m)
n :=

∑n
k=1

1
km , the m = 1 case of which corresponds to the harmonic num-

ber Hn. We close this section by noting some interesting identities obtained by
choosing certain values of x in the last two theorems.

Corollary 8. We have the following identities:

(i) nm(nm+ r)n−1 =

n∑
k=0

Âm,r(n, k − 1)

(
n+ k

n

)
(Hn+k −Hk),

(ii) (n− 1)nm2(nm+ r)n−2

=

n∑
k=0

Âm,r(n, k − 1)

(
n+ k

n

)
[(Hn+k −Hk)2 +H

(2)
k −H

(2)
n+k],

(iii) (m+ r)nn! =

n∑
k=0

n∑
i=0

n∑
`=i

Am,r(n, k)

[
n

`

](
`

i

)
(1− k)i,

(iv) (r + 1)nn! =

n∑
k=0

n∑
i=0

n∑
`=i

Am,r(n, k)

[
n

`

](
`

i

)
(m(1− k))i

m`
,

(v) (m+ 1)nn! =

n∑
k=0

n∑
i=0

n∑
`=i

Am,r(n, k)

[
n

`

](
`

i

)
r`−i−n(1− k)i.

Proof. The first two formulas above are obtained by replacing x by n+1 in Theorem
6 and referring to the identity [6]

ψ(z + n)− ψ(z) =

n∑
j=1

1

z + j − 1
, n ≥ 1.

Formulas (iii), (iv) and (v) are obtained by taking x = 1, x = 1
m and x = r,

respectively, in (19).

4. Generalized Euler-Frobenius Fractions

The Euler-Frobenius fractions were defined by Euler in his treatise Institu-
tiones Calculi Differentialis [12, Sect. 173, Chap. 7]. They have since been widely
studied and bear a close relationship with the classical Eulerian polynomials. The
Euler-Frobenius fractions Hn(t) can be defined via the generating function

1− t
ex − t

=

∞∑
n=0

Hn(t)
xn

n!
, t 6= 1.
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Later, Carlitz introduced a generalization of the Euler-Frobenius fractions [4] given
by

1− t
ex − t

eux =

∞∑
n=0

Hn(u|t)x
n

n!
.

Note that if u = 0, then Hn(0|t) = Hn(t). The Eulerian polynomials are defined by

An(x) :=

n∑
k=1

A(n, k)xk, n ≥ 1,

with A0(x) = 1. These polynomials satisfy the following relation [8, p. 245]:

An(x)

(1− x)n+1
=

∞∑
k=0

knxk, n ≥ 0.

We summarize some known properties of the Euler-Frobenius fractions.

Theorem 9 ([16]). The following identities hold:

An(t) = (t− 1)nHn(t),

d

du
Hn(u|t) = nHn−1(u|t),

Hn(u|t) =

n∑
k=0

(
n

k

)
Hk(t)un−k.

The r-Whitney-Eulerian polynomials are defined by

An,m,r(x) :=

n∑
k=0

Am,r(n, k)xk.

These new polynomials satisfy the following relation [19]:

∞∑
i=0

(mi+ r)nxi =
An,m,r(x)

(1− x)n+1
, n, r ≥ 0, m ≥ 1.(21)

Different families of polynomials related to r-Whitney numbers have been recently
studied in [9].

We now define the r-Whitney-Euler-Frobenius fractions Hn,m,r(t) by means
of the relation

An,m,r(t) = (t− 1)nHn,m,r(t).(22)

We have the following generating function formula.

Theorem 10. The exponential generating function for the r-Whitney-Euler-Frob-
enius fractions is given by

∞∑
n=0

Hn,m,r(t)
xn

n!
=

1− t
emx − t

e(m−r)x.
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Proof. From (21) and (22), we have

Hn,m,r(t) =
An,m,r(t)

(t− 1)n
= (1− t)(−1)n

∞∑
i=0

(mi+ r)nti.

Therefore

∞∑
n=0

Hn,m,r(t)
xn

n!
=

∞∑
n=0

∞∑
i=0

(1− t)(−1)n(mi+ r)nti
xn

n!

=

∞∑
i=0

(1− t)ti
∞∑
n=0

(−x(mi+ r))n

n!

=

∞∑
i=0

(1− t)tie−x(mi+r) = (1− t)e−xr 1

1− te−xm

=
1− t
exm − t

e(m−r)x.

This expression resembles that of the Carlitz generalization, actually they are
almost the same. Observe that replacing x by x/m yields the expression

1− t
ex − t

e
m−r
m x,

which is the generating function for Hn(u|t) when u = (m − r)/m. Therefore, we
have

Hn,m,r(t) = mnHn

(
m− r
m
|t
)
,

Hn,m,r(t) =

n∑
k=0

(
n

k

)
Hk(t)(m− r)n−kmk.

From the previous observations, one can derive further identities. For example,
Carlitz [5] obtained a formula for the product of two generalized Euler-Frobenius
fractions. In our case, this result is as follows.

Theorem 11. For α, β, αβ 6= 1, we have

Hi,m,r(α)Hj,m,r(β) = Hi+j,m,r(αβ)
(1− α)(1− β)

1− αβ

+
α(1− β)

1− αβ

i∑
`=0

(
i

`

)
H`(α)m`Hi+j−`,m,r(αβ)

+
β(1− α)

1− αβ

j∑
k=0

(
j

k

)
Hk(β)mkHi+j−k,m,r(αβ).
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5. Generalized Eulerian recurrences

In this section, we consider two kinds of more general Eulerian recurrences.
The first will arise as a signed distribution of statistics on a set of marked permu-
tations and will have Am,r(n, k) as a special case. The second recurrence, while
it does not generalize Am,r(n, k) above, is perhaps more natural when considering
distributions of statistics on permutations of [n]. Both sequences will be seen to
reduce to the classical Eulerian numbers whenever all of the parameters are unity.

5.1 A generalization of Am,r(n, k)

Given indeterminates a, b, c and d, let A(n, k) = A(n, k; a, b, c, d) for n ≥ 0
and 0 ≤ k ≤ n be defined by the recurrence

(23) A(n, k) = (a(k − 1) + b)A(n− 1, k) + (c(n− k) + d)A(n− 1, k − 1),

for n ≥ 1 and 1 ≤ k ≤ n, with the initial condition A(n, 0) = (b− a)n for all n ≥ 0.
Put A(n, k) = 0 if k < 0 or if k > n ≥ 0. Note that A(n, k;m,m + r,m,m − r) =
Am,r(n, k) for all n and k. We remark that (23) is a special case of the recurrence
in Problem 6.94 of [14, p. 319], but with different initial conditions.

We first find a combinatorial interpretation for A(n, k). Recall that if π =
π1π2 · · ·πn, then a descent corresponds to an index i ∈ [i− 1] such that πi > πi+1.
The letter πi is referred to as a descent top.

Definition 12. Given 1 ≤ k ≤ n and i ∈ [n], let An,k,i denote the set of “marked”
permutations π of [n] having k − 1 descent tops in [i + 1, n] such that (I) the
subsequence 1, 2, . . . , i− 1 occurs in π, (II) each element of [i− 1] is either circled
or underlined and (III) no elements of [i, n] are circled or underlined.

Definition 13. Let An,k = ∪ni=1An,k,i if k ≥ 1, with An,0 consisting of the 2n

“marked” permutations obtained from the identity permutation 12 · · ·n wherein
each letter is either circled or underlined.

Note that An,k,i is empty if i > n − k + 1. Let cir(λ) and und(λ) denote
the statistics recording the number of elements that are either circled or underlined
within λ ∈ An,k.

We now define the statistics αj for 1 ≤ j ≤ 4 on An,k as follows. By a left-
right (lr) minimum (right-left (rl) minimum) of π, we mean a letter πi such that
πj > πi for all j < i (respectively, j > i). Given λ ∈ An,k,i where 1 ≤ k, i ≤ n, let

α1(λ) = n− k − cir(λ)− (# rl min in [i+ 1, n]),

α2(λ) = cir(λ) + (# rl min in [i+ 1, n]),

α3(λ) =

{
(# descent tops in [i+ 1, n])− (# lr min) + 2, if i > 1;

(# descents)− (# lr min) + 1, if i = 1,

α4(λ) =

{
(# lr min)− 1, if i > 1;

(# lr min), if i = 1.
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By combining a statistic defined on the various An,k,i, one obtains the correspond-
ing statistic on An,k. Note that the α1 statistic may also be written as

α1(λ) = und(λ) + n− i− (k − 1)− (# rl min in [i+ 1, n]),

while the first case of α3 may be written as

α3(λ) = (# descent tops in [i+ 1, n])− (# lr min in [i+ 1, n]) + 1− [i is a lr min],

where λ ∈ An,k,i for some i. To illustrate, let n = 9, k = 5, i = 3 and λ =
968415237 ∈ A9,5,3 ⊆ A9,5. Then α1(λ) = 9 − 5 − 0 − 1 = 3, α2(λ) = 0 + 1 = 1,
α3(λ) = 4− 4 + 2 = 2 and α4(λ) = 4− 1 = 3.

If k = 0, then we have A(n, 0) = (b− a)n =
∑
λ∈An,0

(−1)und(λ)aund(λ)bcir(λ).

There is the following combinatorial interpretation for A(n, k) when k ≥ 1.

Theorem 14. If n ≥ k ≥ 1, then

(24) A(n, k) =
∑

λ∈An,k

(−1)und(λ)aα1(λ)bα2(λ)cα3(λ)dα4(λ),

where und and the αi statistics are as defined above.

Proof. We first verify (24) in the case when k = 1. Let A′(n, k) denote the (signed)
distribution on the right-hand side of (24). By the definition, upon considering
λ ∈ An,1,i for the various i, we have

A′(n, 1) =

n∑
i=1

(b− a)i−1(c(i− 1) + d)bn−i.

One may then verify bA′(n− 1, 1) + (c(n− 1) + d)(b− a)n−1 = A′(n, 1) for n ≥ 2,
with A′(1, 1) = d = A(1, 1), whence A′(n, 1) = A(n, 1) for all n ≥ 1. So assume
k ≥ 2. Then the total weight is (a(k − 1) + b)A′(n− 1, k) for all members of An,k
where either (a) n separates two elements that form a descent within a member of
An−1,k,i for some i where the descent top belongs to [i + 1, n − 1] or (b) n occurs
last. To see this, note that in the first case, only the α1 statistic value is increased
by one (as the first term in the definition of α1 increases, while the other terms
remain unchanged), whereas in the second case, only α2 is increased by one (since
the number of rl minima increases). On the other hand, if (i) n is neither first
nor last and does not separate two elements forming a descent within a member
of An−1,k−1,i for some i where the descent top lies in [i + 1, n − 1] or if (ii) n
is first, then it is seen that there are (c(n − k) + d)A′(n − 1, k − 1) possibilities.
Combining the previous cases implies A′(n, k) satisfies recurrence (23) for k ≥ 2.
Since A′(n, 1) = A(n, 1) and A′(k, k) = dk = A(k, k) for all k, it follows by induction
that A′(n, k) = A(n, k) for all n, k ≥ 1, which completes the proof.

Remark: When a = m, b = m+ r, c = m and d = m− r, one obtains a new combi-
natorial interpretation for Am,r(n, k) in terms of statistics on a discrete structure;
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see [22, Theorem 1] for an interpretation of Am,r(n, k) as an enumerator of signed
permutations that are colored subject to certain rules.

We now find a formula for the exponential generating function of A(n, k).
Define Ak(x) =

∑
n≥k A(n, k)x

n

n! for k ≥ 0. Then (23) can be rewritten as

d

dx
Ak(x) = (a(k − 1) + b)Ak(x) + (c+ d− ck)Ak−1(x) + cx

d

dx
Ak−1(x), k ≥ 1,

with A0(x) = e(b−a)x. Define A(x, y) = A(x, y; a, b, c, d) =
∑
k≥0Ak(x)yk. Mul-

tiplying both sides of the above recurrence by yk, and summing over k ≥ 1, we
obtain the linear first-order partial differential equation

(25) (1− cxy)
∂

∂x
A(x, y) = (b− a+ dy)A(x, y) + y(a− cy)

∂

∂y
A(x, y),

with A(0, y) = 1, which can be solved explicitly to yield the following result.

Theorem 15. The generating function A(x, y; a, b, c, d) is given by

e−
∫ x
0

df(t)+ct(a−b)
ct(f(t)+1)

dt,

where f(t) = W (−cytea(x−t)−cxy) and W (t) denotes the Lambert-W function de-
fined as the solution to W (t)eW (t) = t.

We note that relatives of the p.d.e. (25) were considered earlier in [1]. It is
well-known (see, e.g., [14, Eqn. 7.56]) that A(x, y; 1, 1, 1, 1) = 1−y

1−yex(1−y) . Hence,

we can state the following.

Corollary 16. We have

e
−

∫ x
0

W (−ytex−t−xy)

t(W (−ytex−t−xy)+1)
dt

=
1− y

1− yex(1−y)
,

where W (t) is the Lambert-W function.

Let u = −ytex−t−xy. One may verify

∂

∂y

(
W (u) + t

t(W (u) + 1)

)
=

(t− 1)(1− xy)ex−t−xyW ′(u)

(W (u) + 1)2
,

and hence ∫ x

0

∂

∂y

(
W (u) + t

t(W (u) + 1)

)
dt = −1− xy

y

[
1

W (u) + 1

]t=x
t=0

=
1− xy
y

(
1− 1

1− xy

)
= −x,
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where we have used the fact W (zez) = z if z ≥ −1. Thus, we have∫ x

0

W (−ytex−t−xy) + t

t(W (−ytex−t−xy) + 1)
dt = x− xy,

as this integral is seen to equal x when y = 0, whence

e
r
m

∫ x
0

W (−ytex−t−xy)+t

t(W (−ytex−t−xy)+1)
dt

= e
rx(1−y)

m .

Corollary 16 then implies

e
−

∫ x
0

W (−ytex−t−xy)

t(W (−ytex−t−xy)+1)
dt
e
∫ x
0

rW (−ytex−t−xy)+rt

mt(W (−ytex−t−xy)+1)
dt

=
(1− y)e

rx(1−y)
m

1− yex(1−y)
,

which may be rewritten as

e
−

∫ x
0

(m−r)W (−ytex−t−xy)−rt

mt(W (−ytex−t−xy)+1)
dt

=
(1− y)e

rx(1−y)
m

1− yex(1−y)
.

Therefore, by Theorem 15, we get the following result.

Corollary 17. We have

A(x, y;m,m+ r,m,m− r) = e
−

∫ x
0

(m−r)W (−mytem(x−t)−mxy)−rmt

mt(W (−mytem(x−t)−mxy)+1)
dt

=
(1− y)erx(1−y)

1− yemx(1−y)
.

Remark: The second formula above for A(x, y;m,m + r,m,m − r) coincides with
the e.g.f. formula from [19, 22] for Am,r(n, k). We also note the following further
special cases of A(x, y; a, b, c, d):

A(x, y; 1, 1, 1, d) = A(x, y; 1, 1, 1, 1)d,

A(x, y; 1, 1/c, c, 1) = A(x, cy; 1, 1, 1, 1)2/c−1ex(1−c)(1/c−y),

A(x, y; a, b, c, c− bc/a) = ex(b−a)(1−cy/a).

5.2 A related distribution on Sn

Note that A(n, k; a, b, c, d), while it does reduce to the classical Eulerian num-
ber when a = b = c = d = 1, is not a joint distribution polynomial in general for
statistics on permutations of [n] having k− 1 descents since it contains terms with
negative coefficients if a 6= b. One may wish to consider alternatively the following
variant, which we will denote by B(n, k) = B(n, k; a, b, c, d), that is indeed a joint
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distribution of statistics. Let B(n, k) for n ≥ 0 and 0 ≤ k ≤ n be defined by the
same recurrence

(26) B(n, k) = (a(k − 1) + b)B(n− 1, k) + (c(n− k) + d)B(n− 1, k − 1),

for n ≥ 1 and 1 ≤ k ≤ n, but instead with the initial condition B(n, 0) = δn,0.

Let Bn,k denote the set of permutations of [n] having k − 1 descents for
n ≥ k ≥ 1. Then we have the following combinatorial interpretation for B(n, k).

Theorem 18. The polynomial B(n, k; a, b, c, d) is the joint distribution on Bn,k for
the following four respective permutation statistics: (a) ascents − rl minima + 1,
(b) rl minima − 1, (c) descents − lr minima + 1, (d) lr minima.

Proof. Let B′(n, k) denote the joint distribution of the four statistics on Bn,k. We
will show that B′(n, k) satisfies recurrence (26). In the k = 1 and k = n cases, we
have B′(n, 1) = bn−1d and B′(n, n) = dn and the recurrence is clear in these cases,
so assume 1 < k < n. To show (26), we consider the placement of the element n
within λ ∈ Bn,k. If n occurs at the very end of λ, then n contributes a right-left
minima greater than one, while if n is inserted between two elements forming a
descent within a member of Bn−1,k, then n fails to be a right-left minima, and in
both cases the number of descents remains unchanged. This yields contributions of
bB′(n− 1, k) and a(k − 1)B′(n− 1, k) in the respective cases. On the other hand,
if n occurs at the very beginning of λ, then it contributes a left-right minima as
well as a descent and hence there are dB′(n − 1, k − 1) possibilities. Finally, if n
is inserted between two elements forming an ascent within a member of Bn−1,k−1,
then there are (n − 2) − (k − 2) = n − k choices for the position of n and hence
there are c(n− k)B′(n− 1, k − 1) possibilities, which completes the proof.

We now find a formula for the e.g.f. of B(n, k). Define

Bk(x) =
∑
n≥k

B(n, k)
xn

n!
.

Then (26) can be written as

d

dx
Bk(x) = (a(k − 1) + b)Bk(x) + (c+ d− ck)Bk−1(x) + cx

d

dx
Bk−1(x), k ≥ 1,

with B0(x) = 1. Define B(x, y) = B(x, y; a, b, c, d) =
∑
k≥0Bk(x)yk. Multiplying

both sides of the above recurrence by yk and summing over k ≥ 1, we obtain

(1− cxy)
∂

∂x
B(x, y) = (b− a+ dy)B(x, y) + a− b+ y(a− cy)

∂

∂y
B(x, y),

with B(0, y) = 1. Again, it is possible to express the solution to the p.d.e. in terms
of the Lambert-W.
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Theorem 19. The generating function B(x, y; a, b, c, d) is given by(
1 + (a− b)

∫ x

0

e
1
c

∫ t
0

df(r)+cr(a−b)
r(f(r)+1)

dr

f(t) + 1
dt

)
e−

∫ x
0

df(t)+ct(a−b)
ct(f(t)+1)

dt,

where f(t) = W (−cytea(x−t)−cxy).

Corollary 20. The generating function B(x, y; b, b, c, d) is given by

B(x, y; b, b, c, d) =

(
b− cy

b− cyex(b−cy)

)d/c
.

Proof. Taking a = b in Theorem 19 yields

B(x, y; b, b, c, d) = e
− d

c

∫ x
0

W (−cyteb(x−t)−cxy)

t(W (−cyteb(x−t)−cxy)+1)
dt
.

Thus, by Corollary 16, we complete the proof.

For example, Corollary 20 with d = c gives

B(x, y; b, b, c, c) =
1− cy/b

1− cy/bebx(1−cy/b) =
∑
n≥0

n∑
k=0

An,k
bn−kckxnyk

n!
,

where An,k denotes here the classical Eulerian number. This implies that the

coefficient of xnyk

n! in B(x, y; b, b, c, c) is given by bn−kckAn,k, which is also easily
realized combinatorially.

As another example, taking a = c = 1 in Corollary 20 implies

B(x, y; 1, 1, 1, z) =

(
1− y

1− yex(1−y)

)z
.

Note that this yields a formula for the e.g.f. of the joint distribution for the statistics
on Sn recording the number of descents and lr minima (marked here by y and z,
respectively). From this, we have

d

dz
B(x, y; 1, 1, 1, z) =

(
1− y

1− yex(1−y)

)z
ln

(
1− y

1− yex(1−y)

)
,

which leads to

d

dz
B(x, 1; 1, 1, 1, z) |z=1=

− ln(1− x)

1− x
=
∑
n≥1

Hnx
n,

where Hn is the harmonic number.

Remark: From the final equality, one concludes that there are n!Hn lr minima alto-
gether in Sn. Since the statistics recording the number of lr minima and cycles are
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equally distributed on Sn, this reaffirms the well-known fact (see, e.g., [2, Theorem
12]) that there are on average Hn cycles within a randomly chosen permutation of
[n].
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