期刊论文详细信息
Applicable Analysis and Discrete Mathematics
ON A FIRST-ORDER SEMIPOSITONE BOUNDARY VALUE PROBLEM ON A TIME SCALE
article
Christopher S. Goodrich1 
[1] Department of Mathematics, Creighton Preparatory School
关键词: Time scales;    integral boundary condition;    first-order boundary value prob- lem;    cone;    positive solution;   
DOI  :  10.2298/AADM140812013G
学科分类:社会科学、人文和艺术(综合)
来源: Univerzitet u Beogradu * Elektrotehnicki Fakultet / University of Belgrade, Faculty of Electrical Engineering
PDF
【 摘 要 】

We consider the existence of a positive solution to the first-order dynamicequation y∆(t)+p(t)yσ(t) = λf (t, yσ(t)) , t ∈ (a, b)T, subject to the boundarycondition y(a) = y(b) + R τ2τ1F(s, y(s)) ∆s for τ1, τ2 ∈ [a, b]T. In this setting,we allow f to take negative values for some (t, y). Our results generalize somerecent results for this class of problems, and because we treat the problemon a general time scale T we provide new results for this problem in the caseof differential, difference, and q-difference equations. We also provide somediscussion of the applicability of our results.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307080003595ZK.pdf 202KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次