期刊论文详细信息
Engineering Proceedings
Data Generation with Variational Autoencoders and Generative Adversarial Networks
article
Daniil Devyatkin1  Ivan Trenev1 
[1] V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
关键词: machine learning;    deep learning;    autoencoders;    generative adversarial network;    MNIST;   
DOI  :  10.3390/engproc2023033037
来源: mdpi
PDF
【 摘 要 】

The paper considers the problem of modelling the distribution of data with noise in the input data. In this paper, we consider encoders and decoders, which solve the problem of modelling data distribution. The improvement of variational autoencoders (VAEs) is discussed. Practical implementation is performed using the Python programming language and the Keras framework. Generative adversarial networks (GANs) and VAEs with noisy data are demonstrated.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010005086ZK.pdf 378KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次