engineering
proceedings

Proceeding Paper

Data Generation with Variational Autoencoders and Generative
Adversarial Networks *

Daniil Devyatkin * and Ivan Trenev

check for
updates

Citation: Devyatkin, D.; Trenev, L.
Data Generation with Variational
Autoencoders and Generative
Adversarial Networks. Eng. Proc.
2023, 33,37. https://doi.org/
10.3390/ engproc2023033037

Academic Editors: Askhat Diveev,
Ivan Zelinka, Arutun Avetisyan and

Alexander Ilin

Published: 20 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya Street,

117997 Moscow, Russia

* Correspondence: devyatkin.for.other@bk.ru; Tel.: +7-495-334-8910; Fax: +7-499-234-64-26

t Presented at the 15th International Conference “Intelligent Systems” (INTELS22), Moscow, Russia, 14-16
December 2022.

Abstract: The paper considers the problem of modelling the distribution of data with noise in the
input data. In this paper, we consider encoders and decoders, which solve the problem of modelling
data distribution. The improvement of variational autoencoders (VAEs) is discussed. Practical
implementation is performed using the Python programming language and the Keras framework.
Generative adversarial networks (GANs) and VAEs with noisy data are demonstrated.

Keywords: machine learning; deep learning; autoencoders; generative adversarial network; MNIST

1. Introduction to Variational Autoencoders

An autoencoder is a special architecture of a neural network, applying unsupervised
learning using the backpropagation method. In other words, it is a neural network that
has been trained to copy its input to output. The network consists of two parts: encoding
functions z = E(x,0) and decoding function £ = D(z,6p) [1]. Figure 1 demonstrates
an example of an autoencoder with three hidden states. In the learning process, the
autoencoder tries to learn the identical function £ = D(E(x)) by minimizing some loss
function L(%, x). The solution to minimizing the factor can be consider as

[0g,0p) = argmin L(%, x), (1)

where 0 and 0p are the weights of the encoder and decoder, respectively.

Figure 1. Autoencoder with three latent states.

There are many types of autoencoders: downscaling, where the dimension of z is less
than of the input one; sparse, where a penalty is added to the loss function for large values

Eng. Proc. 2023, 33, 37. https:/ /doi.org/10.3390/engproc2023033037 https:/ /www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023033037
https://doi.org/10.3390/engproc2023033037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://doi.org/10.3390/engproc2023033037
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023033037?type=check_update&version=1

Eng. Proc. 2023, 33, 37

20f7

of the latent representation z, etc. The main idea of autoencoder theory is the conjecture on
the concentration of data in the neighbourhood of some low-dimensional manifold. Any
autoencoder training procedure involves a compromise between two goals:

1. Training the latent representation z of the training sample x such it can be accurately
reconstructed from z using the decoder. However, there is one critical factor: x must
be chosen from the training dataset. This means that the autoencoders must not
reconstruct xwhich are not possible with respect to the probability function.

2. Satisfaction of the constraints or regularizing penalty.

These two requirements force the latent representation to capture information con-
cerning the structure of the distribution which generates the data. If we consider an image
as an input, then it is obvious that not all pixels carry useful information, most of them are
noise. For example, if you search for some object in the image, then the informative pixels
are only those that form the desired object. Furthermore, if we consider the image of an
object in a certain neighbourhood, then it can also be considered an object.

The main problem with these models is predicting a sample from the original sample
based on its hidden representation; however, this is inconvenient since there is no knowl-
edge of how much confidence was predicted. In other words, each sample has a hidden
representation that can be depicted in some space, but we do not know if neighbourhood
of this point is still an object similar to the predicted one. The solution to this problem is
not to predict a sample, but some distribution of the latent variables.

As noted above, z is a vector of hidden variables that defines an object x from the
sample [2]. Let P(x) be a distribution function of the initial data, P(z) denotes the latent
factor distribution density, and P(x | z) is the image probability distribution for given latent
factors. Then the data generation process can be expressed as [3]:

m@:/b@uw@mz

Let P(x | z) be the sum of some generating function f(z) and noise €. We parametrize
the generating function f(z, #) by the vector 6 in some space ®, where f : Z x © — X.
Then the generation process takes the following structure:

P&ﬁﬁiﬂﬂzm+dmmﬂ. @)

4

If we assume that the optimization is being carried out according to the L, metric,
then the noise is normally distributed € ~ A (0,?E), and we obtain

P(x|z0) = N (x| f(z,0), c*E),

where f(z,0) is modelled by a neural network, E is the identity matrix, and ¢? is a positive
scalar.

Next, the parameters § must be found to guarantee the maximum likelihood estimation
in order to maximize the probability of occurrence for objects of the sample P(x). In practice,
for most z, the probability P(x | z) tends to zero, and therefore, it contributes almost nothing
to the estimate of P(x). The key idea of the variational autoencoders (VAEs) is to try and
find values of z which lead to x, enabling the calculation of the probability estimate P(x) on
x. To this, introduce a new function, Q(z | x), must be introduced which can take values of x
and construct a distribution for z that leads to x. The main hypothesis is the cardinality of a
set with “good” z is much smaller than the cardinality of the set for all z. This distribution Q
can be trained to assign high-probability values to those z that are highly likely to generate
x. However, instead of maximizing (2), we need to maximize E, o[P(x |z)].

Eng. Proc. 2023, 33, 37

30f7

We then write the Kullback-Leibler divergence between the Q(z | x) and P(x | z) dis-
tributions as follows

Dxi[Q(z]x) [| P(z[%)] = E.g[log Q(z] x) — log P(z | x)],

where P(z | x) is the real probability distribution of hidden factors for a given x. Next, by
applying the Bayes formula to P(z | x), we obtain

Dr[Q(z[x) || P(z[x)] = E.[log Q(z | x) —log P(x | z) —log P(z)] +log P(x). (3)

In the expression in (3), log P(x) does not depend on z, so it leaves the mathematical
expectation. Next, let us obtain one more Kullback-Leibler divergence

Dxe[Q(z[x) || P(z[x)] = D[Q(z] %) | log P(2)] — Ezvgllog P(x|2)] +log P(x). (4)

The expression in (4) holds true for any Q(z | x) and P(z | x). By applying permutations
to the terms of the equation, one can obtain the following expression

log P(x) — D[Q(z | x) [| P(z| x)] = Ez~g[log P(x | 2)] — D[Q(z] %) || log P(2)]. (5)

In Formula (5), the Q(z|x) is the encoder and P(z|x) is the decoder, and these
distributions are modelled by a neural network; therefore,

Qz[x) = Q(z]x,6r), P(z|x) = P(z]|x,6p),

where 0 and 6p are the weights from Formula (1). The goal of training a VAE is to
maximize P(x). The right-hand side of (5) can be optimized by gradient methods. On the
right, the first term denotes the quality of prediction x by the decoder from the values of
the hidden variables z, and the second term is the Kullback-Leibner divergence between
P(z) and Q(z| x). Let us predict Q as a normal distribution with the following parameters,

Q(z|x,0p) = N(u(x,0g), Z(x,0g)),

where y(x, 0) is the mathematical expectation, and X(x, 6) is the covariance matrix. That
is, the encoder for each x predicts two values: the mathematical expectation y and the
covariance matrix 2. In other words, the encoder predicts some normal distribution. It
is necessary for the distribution of Q(z | x) to be similar to a normal distribution, that is,
the Kullback-Leibner divergence tends to 0, and the quality of the data generated by the
decoder is maximized. This means that two loss functions are used in the implementation
of the model

Dxi[Q(z|x,0) | N(O, E)],

lx = £,

where x is the true data sample, and f(z) = D(E(x)) is the predicted data by the VAE.

Here, random values z ~ Q(z|x,0g) are taken and passed to the decoder. It is
impossible to propagate errors through random values directly, so the reparametrization
trick is used. This method is based on the following formula:

N (u(x,0g), Z(x,0E)) = u(x,0) + X(x,0p) - N(0, E),

where u(x,0F) is the expected value, £(x, 6g) is the covariance matrix, and N'(0, E) is a
standard normal multivariate distribution (visualization in the Figure 2).

Eng. Proc. 2023, 33, 37

40f7

KLIN(u(X),X(X))||N(0,1)]| | Decoder
N (P)

Encoder lSampIeI from (0.] |
(

Figure 2. Block diagram of a variational encoder (VAE) architecture.

2. Generative Adversarial Networks

VAEs compare the original and generated objects based on the mean squares error
and binary cross entropy if the labels are given as the input: this is a poor comparison.
This disadvantage manifests to a lesser extent in another approach, generative adversarial
networks (GANSs). The overall goal of a GAN is to synthesize new data that has the same
distribution as the training set.

There are two neural networks in the GAN model—generator and discriminator [4].
These models are trained in turn. After the model weights are initialized, the generator
generates images, initially this is noise. After several iterations of training the generator, the
discriminator starts working and the generator stops training. This network distinguishes
differences between real images and images synthesized by the generator, and predicts
whether the image is original or generated (0 if false, 1 if true). Networks have been
trained to learn to solve their problems. Two networks play an adversarial game, where
the generator learns to obtain its output and fool the discriminator. Discriminator detection
becomes better at detecting synthesized images. The generator creates random numbers
from a given distribution P(z) and generates objects X, = G(z,0,) from them, used as
the input of the second network. The discriminator receives the objects from the training
sample X and objects created by the generator X}, as the input; subsequently, it learns to
predict the probability whether that particular object is real, giving the scalar D(z,6;). Let
the generator be represented as a mapping G(z, 0;), where G is a differentiable function,
and 6, are generator parameters. The discriminative model D(z, f;) is presented, the model
predicts if the input is real from the training set or synthesized by the generator, where 6,
are the discriminator parameters [5].

Figure 3 shows the following: (Left) the training phase of the discriminator is shown:
the gradient (red arrows) only flows from the loss function to the discriminator, where 6,
(green) is updated to reduce the loss function. The gradient from the right side of the loss
function (object identification error) flows to the generator, only updating the 6, generator
weights (green) towards increasing the probability of the discriminator to make an error.
During the training of the two models, it is necessary for the discriminator D to maximize
the probability of correctly identifying objects using the training and generated samples,

Eng. Proc. 2023, 33, 37

50f7

enabling the generator G to minimize log (1 — D(G(z))). In other words, it is necessary to
reach the next criterion (see Figure 3)

mGinmng(D,G): E [logD(x)]+ E [log(1—D(G(z)))].

X~Pdata z~pz

Generally, the task of training the discriminator and generator is not to find the local
or global minimum of a function, but to find an equilibrium point. In game theory, this
point is called the Nash equilibrium point, where both players no longer benefit, although
they follow the optimal strategy [6].

J- v Jv
oie

Figure 3. GAN training scheme.

3. Practical Implementation

The implementation of the described generative models is demonstrated using Python
and the Keras framework [7-9]. In the first stage, data generation based on the VAE and
GANS’s on the MNIST (Modified National Institute of Standards and Technology database)
dataset is demonstrated [10]. MNIST is a well-known dataset for handwritten numbers.

The encoder architecture used two convolution layers and three fully connected layers.
For the encoder, except the output, the activation function was ReLU and the output is
sigmoid. The size of the hidden variables was 2. The decoder used a fully connected layer
and three layers of transposed convolutions. Furthermore, the decoder output is sigmoid.
Let us move on to the GAN architecture. The generator used a fully connected layer, a 2D
convolution layer, and upsampling. The discriminator used a fully connected layer, 2D
convolution, max pooling, and flattening [11].

Figure 4 shows an example of data generation. The image shows that the autoencoder
performing as expected; however, the contours of the images are very blurry and some
numbers are very similar (this is due to the similar hidden representation of these objects).
Let us add noise to the data resulting in the following: neither the VAE nor the GAN
are robust models. It is worth noting that the noise has a normal distribution with a
mathematical expectation of 0 and a variance of 0.1. Figure 5 shows that in the presence of
noise, data generation does not give the necessary results [12].

Eng. Proc. 2023, 33, 37

60f7

References

Ol W=

NEEHEEERGEEE
HEEnEAREnR
NEEnGEEREaR

Figure 4. (a) Original MNIST dataset. (b) Synthesized images after autoencoder training. (c) Synthesized
images by the GAN generator.

(PSS
‘HBEBEBREEBEE

Figure 5. (a) Original MNIST dataset with noise. (b) Synthesized images after autoencoder training.

(c) Synthesized images by the GAN generator.

4. Conclusions

This experiment shows that generative models demonstrate good results with pure
data; however, if noise is added to the original sample, the results become unpredictable.
To solve this problem, conditional generative models can be considered. In the case of GAN,
one can consider their improvements: DCGAN and WGAN. DCGAN is a modification of
the GAN algorithm based on convolutional neural networks (CNN). The task of finding
a convenient representation of features on large volumes of unlabelled data is one of the
most active areas of research, in particular, the representation of images and videos. One
convenient way to find views can be this network. WGAN uses the Wasserstein loss metric
inside the error function, allowing the discriminator to learn to identify repetitive outputs
faster on which the generator stabilizes.

Author Contributions: Conceptualization, I.T.; methodology, I.T.; software, D.D.; validation, I.T.;
visualization, D.D.; writing—original draft preparation, D.D.; writing—review and editing, D.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2018; pp. 422—441.

Doersch, C. Tutorial on Variational Autoencoders. arXiv 2016, arXiv:1606.05908

Ivchenko, G.I; Medvedev, Y.I. Introduction to Mathematical Statistics; Publishing House LCI: Moscow, Russia, 2010; pp. 457-542.
Raschka, S. Python Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2020; pp. 513-551.

Goodfellow, L].; Pouget-Abadie,].; Mirza, M.; Xu, B.; WardeFarley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. arXiv 2014, arXiv:1406.2661.

Eng. Proc. 2023, 33, 37 70f7

11.

12.

ITMO University. Generative Adversarial Nets (GAN). Available online: https://neerc.ifmo.ru/wiki/index.php?title=
Generative_Adversarial _Nets_(GAN) (accessed on 12 July 2022).

Python Software Foundation. The Python Standard Library. 2020. Available online: https://docs.python.org/3/library/
(accessed on 12 July 2022).

Keras. Simple. Flexible. Powerful. Keras: The Python Deep Learning API. Available online: https://keras.io/ (accessed on 12
July 2022).

Chollet, F. Deep Learning with Python; Simon & Schuster: New York, NY, USA, 2018; pp. 269-314.

MNIST Handwritten Digit Database. The Mnist Database of Handwritten Digit. Available online: http://yann.lecun.com/exdb/
mnist/ (accessed on 14 July 2022).

SImonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014. Available online:
https:/ /arxiv.org/abs/1409.1556 (accessed on 13 July 2022).

Mueller, A.; Guido, S. Introduction to Machine Learning with Python; O’Reilly Media Inc.: Sebastopol, CA, USA, 2016; pp. 180-221.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://neerc.ifmo.ru/wiki/index.php?title=Generative_Adversarial _Nets_(GAN)
https://neerc.ifmo.ru/wiki/index.php?title=Generative_Adversarial _Nets_(GAN)
https://docs.python.org/3/library/
https://keras.io/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1409.1556

	Introduction to Variational Autoencoders
	Generative Adversarial Networks
	Practical Implementation
	Conclusions
	References

