期刊论文详细信息
| Electronic Transactions on Numerical Analysis | |
| Optimal $W^{1,\infty}$-estimates for an isoparametric finite element discretization of elliptic boundary value problems | |
| article | |
| Benjamin Dörich1  Jan Leibold1  Bernhard Maier1  | |
| [1] Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology | |
| 关键词: elliptic boundary value problem; nonconforming space discretization; isoparametric finite elements; Ritz map; maximum norm error estimates; a priori error estimates; weighted norms; | |
| DOI : 10.1553/etna_vol58s1 | |
| 学科分类:数学(综合) | |
| 来源: Kent State University * Institute of Computational Mathematics | |
PDF
|
|
【 摘 要 】
We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order $k\geq1$. We show optimal order of convergence of the isoparametric finite element solution in the $W^{1,\infty}$-norm. As an intermediate step, we derive stability and convergence estimates of optimal order $k$ for a (generalized) Ritz map.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307010000631ZK.pdf | 351KB |
PDF