期刊论文详细信息
Electronic Transactions on Numerical Analysis | |
Optimal $W^{1,\infty}$-estimates for an isoparametric finite element discretization of elliptic boundary value problems | |
article | |
Benjamin Dörich1  Jan Leibold1  Bernhard Maier1  | |
[1] Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology | |
关键词: elliptic boundary value problem; nonconforming space discretization; isoparametric finite elements; Ritz map; maximum norm error estimates; a priori error estimates; weighted norms; | |
DOI : 10.1553/etna_vol58s1 | |
学科分类:数学(综合) | |
来源: Kent State University * Institute of Computational Mathematics | |
【 摘 要 】
We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order $k\geq1$. We show optimal order of convergence of the isoparametric finite element solution in the $W^{1,\infty}$-norm. As an intermediate step, we derive stability and convergence estimates of optimal order $k$ for a (generalized) Ritz map.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307010000631ZK.pdf | 351KB | download |