期刊论文详细信息
Electronic Transactions on Numerical Analysis
Optimal $W^{1,\infty}$-estimates for an isoparametric finite element discretization of elliptic boundary value problems
article
Benjamin Dörich1  Jan Leibold1  Bernhard Maier1 
[1] Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology
关键词: elliptic boundary value problem;    nonconforming space discretization;    isoparametric finite elements;    Ritz map;    maximum norm error estimates;    a priori error estimates;    weighted norms;   
DOI  :  10.1553/etna_vol58s1
学科分类:数学(综合)
来源: Kent State University * Institute of Computational Mathematics
PDF
【 摘 要 】

We consider an elliptic boundary value problem on a domain with regular boundary and discretize it with isoparametric finite elements of order $k\geq1$. We show optimal order of convergence of the isoparametric finite element solution in the $W^{1,\infty}$-norm. As an intermediate step, we derive stability and convergence estimates of optimal order $k$ for a (generalized) Ritz map.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010000631ZK.pdf 351KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次