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Abstract. We consider an elliptic boundary value problem on a domain with regular boundary and discretize
it with isoparametric finite elements of order k ≥ 1. We show optimal order of convergence of the isoparametric
finite element solution in the W 1,∞-norm. As an intermediate step, we derive stability and convergence estimates of
optimal order k for a (generalized) Ritz map.
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1. Introduction. We study for an elliptic, second-order differential operator L the spatial
discretization of the boundary value problem

Lu(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ = ∂Ω,

on a smooth domain Ω with isoparametric finite elements of order k ≥ 1. We prove con-
vergence of the finite element solution uh with optimal order k in the W 1,∞-norm. Since
this is a nonconforming method, we also define a (generalized) Ritz map for which we show
stability and convergence estimates of optimal order k in the W 1,∞-norm. We expect that
with additional technical effort one can also treat Neumann and Robin boundary conditions.
For conforming discretizations of elliptic problems, the finite element solution uh is given
by the Ritz projection of the exact solution u, and hence, estimates for the Ritz projection
immediately imply convergence of uh. This is no longer valid in the nonconforming case, but
nevertheless, in our analysis this is also the major step in the convergence proof for the finite
element discretization. Additionally, estimates for the (generalized) Ritz map can for example
be exploited in the analysis of time-dependent problems; see [16] for evolving surfaces or [8]
for non-autonomous wave equations.

In the conforming case, such estimates are well known for many years now. In fact, the
first quasi-optimal error bounds in the maximum norm were already given in the seventies
by Natterer [19], Scott [28], and Nitsche [20]. Many extensions and refinements have been
achieved in the following years; see, e.g., [2, 3, 7, 12, 15, 17, 18, 21, 22, 23, 25, 27].

However, none of these papers provides stability and convergence estimates in the noncon-
forming case. We briefly elaborate on the literature known to us in this case. In [29], Wahlbin
analyzes quadratic isoparametric finite elements applied to an elliptic Dirichlet problem. The
paper includes the errors introduced by numerical integration and provides convergence in L∞

of order h3−ε for arbitrary ε > 0, where zero extensions are used in order to extend the discrete
solution outside the computational domain. In [26], Schatz and Wahlbin analyze L∞ error
bounds for the case Ωh ⊆ Ω, also using zero extension, and discuss possible generalizations
to the case Ωh 6= Ω.

More recently, this technique was extended in [14] to maximum norm error bounds for
linear finite elements applied to an inhomogeneous Neumann problem. For (evolving) surface
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finite element methods, estimates for the finite element solution and the generalized Ritz map
for isoparametric finite elements are considered in [6, 16].

Our analysis combines the approach in [5, Ch. 8], where stability and convergence of the
Ritz projection in W 1,∞(Ω) is shown, with the framework for isoparametric finite elements
on smooth domains introduced in [4] and generalized in [9, 10]. Since crucial properties of
the Ritz map, such as being a projection and satisfying some orthogonality condition, are
not available in the nonconforming case, the proofs become significantly more technical.
Following the idea of [28], for some point z a regularized delta function δz is introduced in
order to express point evaluation at z as an integral, and we move to a variational setting.
Further, considering solutions of the elliptic problem with right-hand side δz , the W 1,∞-norm
error bounds are reduced to estimates for these solutions in W 1,1(Ω). To do so, several
boundary perturbation terms in [9, 10] are extended to Lp-spaces, p 6= 2. In the next step,
weight functions are introduced such that the estimates are further reduced to weighted H1-
norms. The main part of our paper is devoted to these weighted estimates. It turns out that
the geometric errors introduce severe difficulties in showing the desired order of convergence;
many adaptions have to be made in the boundary perturbation estimates and the elliptic
regularity results.

We point out that in this paper we do not consider convergence of optimal order k + 1 in
L∞(Ω). Looking at the strategy of the proof, this seems to be a straightforward generalization
of the proof presented here, however, the error contribution of the geometric errors is only of
order k. We think that verifying these error bounds would be an interesting topic of future
research.

The paper is organized as follows: in Section 2, we present the analytical framework
and the space discretization by isoparametric Lagrange finite elements. After providing some
properties of the discretized objects, we state our main results on the convergence of the finite
element solution and also on the stability and convergence of the Ritz map.

In a first step towards the proofs of the main results, we reduce in Section 3 the three
results to the same estimates in W 1,1(Ω); several geometric errors are estimated in L1(Ω) and
L∞(Ω).

The proofs of the estimates in W 1,1(Ω) are presented in Section 4. We introduce the
weight functions and move from these estimates to weighted H1-norms. In the proofs,
several elliptic regularity results are needed. For the sake of readability, we postpone them to
Appendix A.

Notation. In the rest of the paper we use the notation a . b if there is a constant C > 0
independent of the spatial parameter h such that a ≤ Cb. Further, for φ ∈W j,p(Ω) we denote
by∇jφ the tensor containing all j-th order derivatives of φ. If it is clear from the context, we
write Lp instead of Lp(Ω) or Lp(Ωh).

2. General setting and main results. For a domain Ω ⊂ RN , N ∈ {2, 3}, with bound-
ary ∂Ω ∈ Cs,1, s ∈ N, we consider the elliptic operator

Lu = −div
(
A∇u) + B · ∇u+ Cu, u ∈ H2(Ω),

with a symmetric, real, matrix-valued function A ∈ W 1,∞(Ω)N,N with a constant cA > 0
such that

(2.1) ξ · A(x)ξ ≥ c−1
A ‖ξ‖

2
, ξ ∈ RN , x ∈ Ω,

B ∈ L∞(Ω)N , and C ∈ L∞(Ω). This operator induces a bilinear form for ϕ,ψ ∈ H1
0 (Ω)

(2.2) a (ϕ,ψ) :=

∫
Ω

∇ψ · A∇ϕdx+

∫
Ω

ψB · ∇ϕdx+

∫
Ω

Cψϕdx.
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We study for f ∈ L2(Ω) the variational problem: find u ∈ H1
0 (Ω) such that

(2.3) a (u, ψ) = (f | ψ)L2(Ω) , ∀ψ ∈ H1
0 (Ω).

We additionally assume one of the two following settings:
1. C ≥ 0 and B = 0 on Ω,
2. C − |divB| ≥ β > 0 on Ω for some constant β,

and denote in the following H = L2(Ω) and V = H1
0 (Ω). Under these assumptions, we

obtain constants cb, cc > 0 such that

|a (ϕ,ψ) | ≤ cb ‖ϕ‖V ‖ψ‖V , a (ϕ,ϕ) ≥ cc ‖ϕ‖2V .

By the Lax-Milgram theorem we have unique solvability of (2.3), and we define the corre-
sponding solution operator S : H → V by S : f 7→ u. We also consider the dual problem:
find v ∈ H1

0 (Ω) such that

a (ψ, v) = (f | ψ)L2(Ω) , ∀ψ ∈ H1
0 (Ω)

and denote its solution operator by S̃ : H → V . For the analysis, we heavily rely on the
following elliptic regularity result.

THEOREM 2.1 (Elliptic regularity [11, Thm. 2.4.2.5]). Let ∂Ω ∈ C1,1. Then for all
1 < p <∞ there is a constant Cp > 0 such that for all ϕ ∈ Lp(Ω) it holds∥∥S̃ϕ∥∥

W 2,p + ‖Sϕ‖W 2,p ≤ Cp ‖ϕ‖Lp .

Space discretization. We study the nonconforming space discretization of (2.3) based on
isoparametric finite elements. For further details on this approach, we refer to [10] and assume
that the boundary ∂Ω is of class Ck+1,1. We introduce a shape-regular and quasi-uniform
mesh Th consisting of isoparametric elements of degree k ∈ N, where the subscript h denotes
the maximal diameter of all elements K ∈ Th. The computational domain Ωh is given by

Ωh =
⋃

K∈Th

K ≈ Ω.

Based on the transformations FK that maps the reference element K̂ to K ∈ Th, we introduce
the isoparametric finite element space of degree k

Wh = {ϕ ∈ C0(Ωh) | ϕ|K = ϕ̂ ◦ (FK)−1 with ϕ̂ ∈ Pk(K̂) for all K ∈ Th}.

Here, Pk(K̂) consists of all polynomials on K̂ of degree at most k. The discrete approximation
spaces are given by

Hh =
(
Wh, (· | ·)L2(Ωh)

)
, Vh =

(
Wh, (· | ·)H1

0 (Ωh)

)
, Xh = Vh ×Hh.

For h ≤ h0 sufficiently small, following the construction in [10, Sec. 5], we introduce the
lift operator Lh : C(Ωh)→ C(Ω). In particular, for p ∈ [1,∞] there are constants cp, Cp > 0
with

cp ‖ϕh‖Lp(Ωh) ≤ ‖Lhϕh‖Lp(Ω) ≤ Cp ‖ϕh‖Lp(Ωh) , ϕh ∈ C(Ωh),(2.4a)

cp ‖ϕh‖W 1,p(Ωh) ≤ ‖Lhϕh‖W 1,p(Ω) ≤ Cp ‖ϕh‖W 1,p(Ωh) , ϕh ∈W 1,∞(Ωh);(2.4b)
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cf. [10, Prop. 5.8]. By construction, the boundary nodes of Ωh lie on ∂Ω, and zero boundary
conditions are preserved by Lh; see [10, Sec. 8.5]. Further, we denote the nodal interpolation
operator by Ih : C0(Ω) → Vh. Enriching the space Wh by basis functions corresponding
to the boundary nodes, we further define its extension Ĩh : C(Ω) → C(Ωh). As shown
in [10, Thm. 5.9], we have for m ∈ {0, 1}, 1 ≤ p ≤ ∞, and 1 ≤ ` ≤ k the estimates∥∥∥(Id− LhĨh)ϕ

∥∥∥
Wm,p(Ω)

. h`+1−m ‖ϕ‖W `+1,p(Ω) , ϕ ∈W `+1,p(Ω).(2.5)

Further, ` = 0 is allowed for N < p ≤ ∞. From now on, we assume for the coefficients

A ∈W k+1,∞(Ω)N,N , B ∈W k+1,∞(Ω)N , C ∈W k+1,∞(Ω)

and define analogously to (2.2)

ah (ϕh, ψh) :=

∫
Ωh

∇ψh · Ah∇ϕh dx+

∫
Ωh

ψhBh · ∇ϕh dx+

∫
Ωh

Chψhϕh dx,

where the discrete coefficients are given by

(2.6) Ah = ĨhA, Bh = ĨhB, Ch = ĨhC.

Then, there is some h0 > 0 such that

|ah (ϕh, ψh) | ≤ ĉb ‖ϕh‖Vh ‖ψh‖Vh , a (ϕh, ϕh) ≥ ĉc ‖ϕh‖2Vh ,

with constants ĉb, ĉc > 0 independent of h ≤ h0. Under these conditions, we obtain unique
solvability of the discrete variational problem

(2.7) ah (uh, ψh) = (fh | ψh)L2(Ωh) ∀ψh ∈ Vh,

for some suitably discretized right-hand side fh ∈ L2(Ωh). Further, we define the adjoint lift
operators LH∗h : H → Hh and LV ∗h : V → Vh by(

LH∗h ϕ | ψh
)
L2(Ωh)

= (ϕ | Lhψh)L2(Ω) , ϕ ∈ H,ψh ∈ Hh.(2.8a)

ah
(
LV ∗h ϕ,ψh

)
= a (ϕ,Lhψh) , ϕ ∈ V, ψh ∈ Vh.(2.8b)

Main results. We are now in the position to state our main results. The proofs are
given in the following sections. The first theorem is concerned with the convergence of the
finite element approximation obtained by (2.7) towards the solution u of (2.3). We need the
following approximation estimate for the right-hand side.

ASSUMPTION 2.2. There is a constant Cf ≥ 0 such that the discretization of the
right-hand side f satisfies one of the following bounds:

‖f − Lhfh‖L∞(Ω) ≤ Cfh
k,(2.9a) ∥∥LH∗h f − fh

∥∥
L∞(Ωh)

≤ Cfhk,(2.9b)

where LH∗h is defined in (2.8a).
The main examples are given by fh = Ĩhf or fh = LH∗h f , which lead to Cf ∼ ‖f‖Wk,∞

or Cf = 0, respectively. Note that, while the interpolation can always be implemented, the
evaluation of LH∗h in the nonconforming case is more involved since one needs to evaluate
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integrals over the smooth domain Ω. In the conforming case, LH∗h reduces to the orthogonal
L2-projection onto Vh.

We obtain the following convergence result.
THEOREM 2.3. Let k ≥ 1 and ∂Ω ∈ Ck+1,1. Further, let Assumption 2.2 hold and

h ≤ h0 be sufficiently small. Then, the error between the solutions u of (2.3) and uh of (2.7)
satisfies

‖u− Lhuh‖W 1,∞(Ω) ≤ Ch
k
(
‖u‖Wk+1,∞(Ω) + Cf

)
,

where C is independent of h.
Proof. See Section 3.4.
In the error analysis of evolution equations, it is often convenient to introduce the Ritz

projection. In the following, we present its generalization for the nonconforming case.
DEFINITION 2.4. Consider the adjoint lift LV ∗h given by (2.8b). We define the generalized

Ritz map by

(2.10) LhLV ∗h : V → V.

In the conforming case one has Ωh = Ω; there we call it the Ritz projection, which satisfies
uh = Rhu, but this is not true in our case in general. In fact, one has to talk about a
(generalized) Ritz map since it is not a projection anymore. In addition, the generalized Ritz
map neither satisfies an orthogonality condition but only an estimate of the form

a
(
u− LhLV ∗h u,Lhϕh

)
. hk

∥∥LV ∗h u
∥∥
Vh
‖ϕh‖Vh , u ∈ V, ϕh ∈ Vh;

see, e.g., [10, Lem. 8.24]. This fact induces several additional error terms in the maximum
norm error analysis that require a detailed inspection.

Nevertheless, the objects uh and LhLV ∗h u are quite related, and, as an intermediate step
towards the above theorem, we obtain the following two results for the Ritz map. These results
are well known in the conforming case.

THEOREM 2.5. Let ∂Ω ∈ Ck+1,1 and h ≤ h0 be sufficiently small. Then the generalized
Ritz map defined in (2.10) is stable in W 1,∞(Ω), i.e.,∥∥LhLV ∗h ϕ

∥∥
W 1,∞(Ω)

. ‖ϕ‖W 1,∞(Ω) , ϕ ∈W 1,∞(Ω).

Proof. See Section 3.2.
We note that by (2.4) it is sufficient to show that∥∥LV ∗h ϕ

∥∥
W 1,∞(Ωh)

. ‖ϕ‖W 1,∞(Ω) , ϕ ∈W 1,∞(Ω).

Our third result is concerned with the approximation properties of the Ritz map.
THEOREM 2.6. Let k ≥ 1, ∂Ω ∈ Ck+1,1, and h ≤ h0 be sufficiently small. Then, it

holds for all ϕ ∈W k+1,∞(Ω) that∥∥(Id− LhLV ∗h )ϕ
∥∥
W 1,∞(Ω)

≤ Chk ‖ϕ‖Wk+1,∞(Ω) ,

where C is independent of h.
Proof. See Section 3.3.
The rest of the paper is dedicated to the proofs of the three theorems.
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3. Proof of the main results. From now on, we choose an arbitrary but fixed index
i ∈ {1, . . . , N} and consider ∂i instead of the full gradient ∇. Following the idea of [28], let
z ∈ Kz with Kz ∈ Th. There exists δz ∈ C1

0 (Kz) (see [24, Ass. A.5] for a construction)
with a zero extension to a function on Ωh such that

(δz | ∂iϕh)L2(Ωh) = ∂iϕh(z), for all ϕh ∈ Vh(3.1)

and

‖∂αδz‖L∞ . h−N−|α|, α ∈ NN0 , |α| ≤ 1.(3.2)

Here we use the notation ∂α = ∂α1
1 · · · ∂

αN
N and |α| =

∑N
i=1 αi. Due to the stability (2.4) of

Lh, we have

‖Lhδz‖L1(Ω) .
∫
Kz

|δz|dx . hNh−N ≤ C.(3.3)

In the following we always assume that h ≤ h0 is sufficiently small in order to apply the
results of the previous section. We further introduce the solutions gzh ∈ Vh and gz ∈ V of the
elliptic variational problems

(3.4)
ah (ϕh, g

z
h) = (−∂iδz | ϕh)L2(Ωh) , ϕh ∈ Vh,

a (ϕ, gz) = (−∂iLhδz | ϕ)L2(Ω) , ϕ ∈ V,

which play an import role in the subsequent error analysis.

3.1. Preliminary results and geometric errors. The aim of this section is to reduce the
maximum norm bounds to the following bounds in W 1,1(Ω). On the one hand, we establish a
bound for the difference of the solutions of (3.4). For the conforming case, this result is shown
in [5, Cor. 8.2.7].

LEMMA 3.1. Let gzh ∈ Vh and gz ∈ V be defined by (3.4). Then, there is a constant
C > 0 such that ‖Lhgzh − gz‖W 1,1(Ω) ≤ C, with C independent of h and z.

Proof. See Section 4.2.
On the other hand, we have to derive a bound for the solution gz ∈ V . To this end, we in-

troduce the set of boundary elements T bh := {K ∈ Th | K has a node on the boundary ∂Ωh}
and also the layer around the boundary Γ by Uh := {x ∈ Ω | dist(x,Γ) ≤ h}. By the
definition of h, this yields that the lift Lh maps functions with support on the triangulation T bh
to functions with support on Uh. The bounds for gz are shown either on this layer of width h
or on the whole domain with an additional factor h in front of the norm.

LEMMA 3.2. There is a constant C > 0 such that ‖gz‖W 1,1(Uh) + h ‖gz‖W 1,1(Ω) ≤ C,
with C independent of h.

Proof. See Section 4.3.
The proofs of the two lemmas are given in Section 4. The rest of this section is concerned

with the reduction of Theorems 2.3, 2.5, and 2.6 to the above lemmas. We note that we employ
several times the Poincaré inequality in the form

(3.5) ‖ϕh‖L∞(Ωh) . ‖∇ϕh‖L∞(Ωh) ,

for all ϕh ∈ Vh. Further, we use a slight extension of the estimates in [10, Lem. 8.24]
and [13, Lem. 7.3] in order to treat the errors stemming from nonconformity. We define the
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boundary perturbation errors for ϕh, ψh ∈W 1,∞(Ωh) by

EH (ϕh, ψh) :=
∣∣(Lhϕh | Lhψh)L2(Ω) − (ϕh | ψh)L2(Ωh)

∣∣,(3.6a)

EH,i (ϕh, ψh) :=
∣∣(∂iLhϕh | Lhψh)L2(Ω) − (∂iϕh | ψh)L2(Ωh)

∣∣,(3.6b)

Ea (ϕh, ψh) :=
∣∣a (Lhϕh,Lhψh)− ah (ϕh, ψh)

∣∣(3.6c)

and state the following result.
LEMMA 3.3. Let ϕh, ψh ∈W 1,∞(Ωh). The bilinear forms in (3.6) are estimated by

EH (ϕh, ψh) ≤ Chk ‖Lhϕh‖L∞(Ω) ‖Lhψh‖L1(Uh) ,

EH,i (ϕh, ψh) ≤ Chk ‖Lhϕh‖W 1,∞(Ω) ‖Lhψh‖L1(Uh) ,

Ea (ϕh, ψh) ≤ Chk+1 ‖Lhϕh‖W 1,∞(Ω) ‖Lhψh‖W 1,1(Ω)

+ Chk ‖Lhϕh‖W 1,∞(Ω) ‖Lhψh‖W 1,1(Uh) ,

with C > 0 independent of h.
Proof. We only prove the third claim for the dominant part of Ea including A since the

other estimates follow analogously. We expand, using the definition of Ah in (2.6),∫
Ω

∇Lhψh · A∇Lhϕh dx−
∫

Ωh

∇ψh · Ah∇ϕh dx

=

∫
Ω

∇Lhψh ·
(
A− LhĨhA

)
∇Lhϕh dx

+

∫
Ω

∇Lhψh · LhAh∇Lhϕh dx−
∫

Ωh

∇ψh · Ah∇ϕh dx.

The first term is estimated using Hölder’s inequality together with (2.5). For the second term,
we proceed analogously to the proof of [10, Lem. 8.24].

In the following, we first prove stability and convergence of the Ritz map and then use
these results in order to establish convergence of the finite element solution.

3.2. Proof of Theorem 2.5. We follow the approach of [5, Sec. 8.2]. Using integration
by parts as well as the definition (2.8b) of the adjoint lift operator, we obtain by (3.1)

(3.7)

∂i
(
LV ∗h u

)
(z) =

(
LV ∗h u | −∂iδz

)
L2(Ωh)

= ah
(
LV ∗h u, gzh

)
= a (u,Lhgzh)

= a (u, gz) + a (u,Lhgzh − gz)
= (u | −∂iLhδz)L2(Ω) + a (u,Lhgzh − gz)

= (∂iu | Lhδz)L2(Ω) + a (u,Lhgzh − gz) .

Hence, Hölder’s inequality yields∣∣∂i(LV ∗h u
)
(z)
∣∣ . (‖Lhδz‖L1(Ω) + ‖Lhgzh − gz‖W 1,1(Ω)

)
‖u‖W 1,∞(Ω) .

By (3.3) and Lemma 3.1, the stability estimate in Theorem 2.5 follows from the Poincaré
inequality (3.5).

3.3. Proof of Theorem 2.6. We combine the approach of the stability analysis, and, in
order to employ the properties of δz , we reduce the estimate to functions on the finite element
space by inserting the interpolation. We first estimate by (2.5)∥∥u− LhLV ∗h u

∥∥
W 1,∞(Ω)

. ‖u− LhIhu‖W 1,∞(Ω) +
∥∥Ihu− LV ∗h u

∥∥
W 1,∞(Ωh)

. hk ‖u‖Wk+1,∞(Ω) +
∥∥Ihu− LV ∗h u

∥∥
W 1,∞(Ωh)

.
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We employ (3.7) and derive

∂i
(
Ihu− LV ∗h u

)
(z) = (∂iIhu | δz)L2(Ωh) −

(
∂iLV ∗h u | δz

)
L2(Ωh)

= (∂iIhu | δz)L2(Ωh) − (∂iu | Lhδz)L2(Ω) − a (u,Lhgzh − gz)

=
(
∂i
(
LhIhu− u

)
| Lhδz

)
L2(Ωh)

+ a (LhIhu− u,Lhgzh − gz)

+ ∆̃1 − ∆̃2

with defects

∆̃1 = (∂iIhu | δz)L2(Ωh) − (∂iLhIhu | Lhδz)L2(Ω) , ∆̃2 = a (LhIhu,Lhgzh − gz) .

We note that both terms vanish in the conforming case. Again, we apply the interpolation
estimate (2.5) and Hölder’s inequality to derive∥∥∂i(Ihu− LV ∗h u

)∥∥
L∞(Ωh)

≤ ‖u− LhIhu‖W 1,∞(Ω) ‖Lhδ
z‖L1(Ω)

+ ‖u− LhIhu‖W 1,∞(Ω) ‖Lhg
z
h − gz‖W 1,1(Ω)

+ |∆̃1|+ |∆̃2|

. hk ‖u‖Wk+1,∞(Ω) + |∆̃1|+ |∆̃2|,

where we used (3.3) and Lemma 3.1 in the last step. Thus, Theorem 2.6 follows once we have
employed the Poincaré inequality (3.5) and shown that

|∆̃1|+ |∆̃2| . hk ‖u‖Wk+1,∞(Ω) .

This inequality is proved in the following series of lemmas.
LEMMA 3.4. There is a constant C > 0 such that |∆̃1| ≤ Chk ‖u‖W 1,∞(Ω), with C

independent of h.
Proof. We obtain by Lemma 3.3 and (3.3)

|∆̃1| ≤ hk ‖∂iLhIhu‖L∞(Ω) ‖Lhδ
z‖L1(Ω) . hk ‖u‖W 1,∞(Ω) ,

where we used the stability of the lift (2.4) and the interpolation (2.5) in the last step.
In the next lemma, we decompose the remaining defect even further into two differences

of bilinear forms.
LEMMA 3.5. The defect ∆̃2 can be represented by ∆̃2 = ∆̃H + ∆̃V , where ∆̃H and ∆̃V

are given by

∆̃H = (LhIhu | ∂iLhδz)L2(Ω) − (Ihu | ∂iδz)L2(Ωh) ,

∆̃V = a (LhIhu,Lhgzh)− ah (Ihu, g
z
h) .

Proof. Using the definitions of gz and gzh in (3.4), we derive

∆̃2 = a (LhIhu,Lhgzh − gz) = a (LhIhu,Lhgzh)− a (LhIhu, gz)

= ah (Ihu, g
z
h) + ∆̃V + (LhIhu | ∂iLhδz)L2(Ω)

= − (Ihu | ∂iδz)L2(Ωh) + ∆̃V + (LhIhu | ∂iLhδz)L2(Ω) = ∆̃H + ∆̃V ,

and the decomposition is shown.
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The final bounds are derived in the next lemma.
LEMMA 3.6. It holds that

|∆̃H |+ |∆̃V | ≤ Chk ‖u‖W 1,∞(Ω) ,

with a constant C > 0 independent of h.
Proof. We consider the two terms separately.
(a) Using integration by parts, Lemma 3.3, and (3.3), we obtain

|∆̃H | = | (∂iLhIhu | Lhδz)L2(Ω) − (∂iIhu | δz)L2(Ωh) |

. hk ‖LhIhu‖W 1,∞(Ω) ‖Lhδ
z‖L1(Ω) . hk ‖u‖W 1,∞(Ω) ,

where we used the stability of the lift (2.4) and the interpolation (2.5) in the last step.
(b) For the second term, we obtain by Lemma 3.3

|∆̃V | = |a (LhIhu,Lhgzh)− ah (Ihu, g
z
h) |

. hk ‖LhIhu‖W 1,∞(Ωh)

(
‖Lhgzh‖W 1,1(Uh) + h ‖Lhgzh‖W 1,1(Ω)

)
. hk ‖u‖W 1,∞(Ω)

(
‖Lhgzh − gz‖W 1,1(Ω) + ‖gz‖W 1,1(Uh) + h ‖gz‖W 1,1(Ω)

)
. hk ‖u‖W 1,∞(Ω) ,

where we used Lemmas 3.1 and 3.2 in the last inequality.
Hence, the proof of Theorem 2.6 is complete.

3.4. Proof of Theorem 2.3. Finally, we employ the already shown convergence in
Theorem 2.6 and insert the Ritz map to compute

‖u− Lhuh‖W 1,∞(Ω) .
∥∥u− LhLV ∗h u

∥∥
W 1,∞(Ω)

+
∥∥LV ∗h u− uh

∥∥
W 1,∞(Ωh)

. hk ‖u‖Wk+1,∞(Ω) +
∥∥LV ∗h u− uh

∥∥
W 1,∞(Ωh)

.

We use the following equality established in (3.7),

∂i
(
LV ∗h u

)
(z) = a (u,Lhgzh) ,

and derive with (3.1) and (2.3) that

∂iuh(z) = (uh | −∂iδz)L2(Ωh) = ah (uh, g
z
h) = (fh | gzh)L2(Ωh)

= (f | Lhgzh)L2(Ω) + ∆f,1 + ∆f,2 = ∂i
(
LV ∗h u

)
(z) + ∆f,1 + ∆f,2,

with defects

∆f,1 = (fh | gzh)L2(Ωh) − (Lhfh | Lhgzh)L2(Ω) , ∆f,2 = (Lhfh − f | Lhgzh)L2(Ω) .

If (2.9a) holds, then we employ Lemmas 3.1, 3.3, and 3.2, to conclude

(3.8) |∆f,1 + ∆f,2| . hk
(
‖f‖L∞(Ω) + Cf

)
. hk

(
‖u‖W 2,∞(Ω) + Cf

)
.

If we assume (2.9b), then combining the defects as

∆f,1 + ∆f,2 =
(
fh − LH∗h f | gzh

)
L2(Ωh)

,

where we used (2.8a), yields (3.8). Hence, we have shown for any z ∈ Ωh that

|∂i
(
LV ∗h u− uh

)
(z)| ≤ Chk,

with a constant C independent of z. Applying the Poincaré inequality (3.5), we conclude the
assertion.
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4. Estimates in the W 1,1-norm. The final section is concerned with the proofs of
Lemma 3.1 and Lemma 3.2. We emphasize that we follow the lines of [5, Chap. 8] and add all
the modifications due to the nonconformity but give a rather complete proof for the sake of
readability.

4.1. Properties of weighted norms. The main technical tool are weighted norms. To
this end, we introduce the family {σz}z∈Ω of weight functions with

σz : Ω→ R, σz(x) =
(
|x− z|2 + ζ2

) 1
2 , ζ = γh.(4.1)

The parameter γ > 0 is fixed below. We first state certain properties of the weight functions.
LEMMA 4.1. Consider the weights defined in (4.1).
(a) For µ ∈ R and β ∈ NN0 there are constants C > 0 independent of x, z ∈ Ω, and h

such that the following bounds hold:

max
K∈Th

(
sup
x∈K

σµz (x)/ inf
x∈K

σµz (x)
)
≤ C,(4.2a)

‖σµz ‖L∞ ≤ C max{1, (γh)µ},(4.2b) ∣∣∂βxσµz (x)
∣∣ ≤ Cβσµ−|β|z (x), x ∈ Ωh.(4.2c)

(b) If α > N , then it holds that∫
Ω

σ−αz (x) dx ≤ C max{1, 1
α−N }(γh)−α+N .(4.3)

Proof. These properties can be easily derived from the definition (4.1).
REMARK 4.2. In the following computations, we estimate σz in the maximum norm

several times by

(4.4) ‖σz‖L∞ ≤ C
(
1 + γh

)
.

At the end of the proof, we fix some γ sufficiently large that is independent of h. Hence, we
can estimate (4.4) by some constant Cσ which is uniformly bounded in γ and h for all h ≤ h0.

Similar to Lemma 3.3, we need an additional extension of the estimates in [10, Lem. 8.24]
and [13, Lem. 7.3] in order to treat the errors stemming from nonconformity in the analysis
with weighted norms.

LEMMA 4.3. Let ϕh, ψh ∈W 1,∞(Ωh). The errors in the bilinear forms defined in (3.6)
are estimated for any α ∈ R by

EH (ϕh, ψh) ≤ Chk
(∫

Ω

σαz |Lhϕh|
2

dx
)1/2(∫

Ω

σ−αz |Lhψh|2 dx
)1/2

,

EH,i (ϕh, ψh) ≤ Chk+1/2
(∫

Ω

∣∣∣∇(σα/2z Lhϕh
)∣∣∣2 dx

)1/2(∫
Ω

σ−αz |Lhψh|2 dx
)1/2

,

Ea (ϕh, ψh) ≤ Chk
(∫

Ω

σαz
(
|∇Lhϕh|2 + |Lhϕh|2

)
dx
)1/2

×
(∫

Ω

σ−αz
(
|∇Lhψh|2 + |Lhψh|2

)
dx
)1/2

,

with C > 0 independent of h and α.
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Proof. We proceed as in the proof of Lemma 3.3 and only discuss the inclusion of the
weights writing

(Lhϕh | Lhψh)L2(Ω) − (ϕh | ψh)L2(Ωh)

=

∫
Ω

σ−α/2z Lhψhσα/2z Lhϕh dx−
∫

Ωh

(
L−1
h σ−α/2z

)
ψh
(
L−1
h σα/2z

)
ϕh dx.

Since the integrand of the first integral is the lift of the integrand in the second integral, the
same proof as in [10, Lem. 8.24] gives the first inequality. Similarly, one obtains the last
inequality. In order to obtain the additional order of convergence in the second inequality, we
apply the narrow band inequality [9, Lem. 4.10] to σα/2z Lhϕh.

With these preparations, we are in the position to prove Lemmas 3.1 and 3.2.

4.2. Proof of Lemma 3.1. In order to move fromW 1,1 toH1, we use the weight function
σz and obtain the following upper bound by a weighted H1-norm.

LEMMA 4.4. Let

Mh := sup
z∈Ω

(∫
Ω

σN+λ
z |∇(gz − Lhgzh)|2 dx

)1/2

.(4.5)

Then, for λ ∈ (0, 1) it holds ‖Lhgzh − gz‖W 1,1 ≤ CMhλ
−1/2(γh)−λ/2, with a constant

C > 0 independent of γ, λ, and h.
Proof. By Hölder’s inequality, we have∥∥∇(Lhgzh − gz)∥∥L1 ≤Mh

(∫
Ω

σ−N−λz dx
)1/2

≤ CMhλ
−1/2(γh)−λ/2,

where we used (4.3) with α = N + λ for the last inequality. An application of the Poincaré
inequality yields the assertion.

From this, we see that it is sufficient to prove the following proposition from which
Lemma 3.1 directly follows.

PROPOSITION 4.5. There is a λ > 0 and γ > 1 such that for all 0 < h < h0 it holds
M2
h ≤ Cγhλ for Mh defined in (4.5) with a constant Cγ > 0 independent of h.

Proof. This follows from the auxiliary results in the remainder of this section.
Before we prove Proposition 4.5, we state the following estimates for weighted norms of

δz . Later, they give the desired convergence rate hλ.
LEMMA 4.6. For all µ > 0, the bounds∫

Ω

σN+µ
z |∇Lhδz|2 dx ≤ Cγhµ−2,

∫
Ω

σN+µ
z |Lhδz|2 dx ≤ Cγhµ,

hold with a constant Cγ > 0 independent of h.
Proof. By the shape-regularity and the definition of the weight in (4.1), we obtain∥∥σN+µ

z

∥∥
L∞(Kz)

. (γh)N+µ,

and we use δz ∈ C∞0 (Kz) together with (3.2) to bound∫
Ω

σN+µ
z |∇Lhδz|2 dx . hNhN+µh−2(N+1) . hµ−2,∫

Ω

σN+µ
z |Lhδz|2 dx . hNhN+µh−2N . hµ.
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In the following, we present an extension of [5, Prop. 8.3.1]. In this step, the weighted
H1-norm in (4.5) is replaced by a weighted L2-norm and some additional error terms. We
point out that in the conforming case the differences in the scalar product simply vanish.

PROPOSITION 4.7. Let gz ∈ V and gzh ∈ Vh be the solutions of (3.4), and define the
errors e = gz − Lhgzh and ê = (Id− LhIh)gz . Then∫

Ω

σN+λ
z |∇e|2 dx .

∫
Ω

σN+λ−2
z |e|2 dx+

∫
Ω

σN+λ−2
z |ê|2 dx+

∫
Ω

σN+λ
z |∇ê|2 dx

+
∣∣(∂iLhδz | LhIhψ)L2(Ω) − (∂iδ

z | Ihψ)L2(Ωh)

∣∣
+
∣∣ah (gzh, Ihψ)− a (Lhgzh,LhIhψ)

∣∣,
with ψ = σN+λ

z Lh(Ihg
z − gzh).

Proof. Let ẽ = Ihg
z − gzh. Then we have ψ = σN+λ

z Lhẽ . We note that

Lhẽ = e− ê ,(4.6)

and we compute by (2.1) and the definition of a (·, ·) in (2.2)∫
Ω

σN+λ
z |∇e|2 dx ≤ cA

∫
Ω

σN+λ
z ∇e · A∇edx

= cAa
(
σN+λ
z e, e

)
− cA

∫
Ω

(∇σN+λ
z )e · A∇edx

− cA
∫

Ω

eB · ∇
(
σN+λ
z e

)
dx− cA

∫
Ω

CσN+λ
z |e|2 dx

= cAa
(
σN+λ
z ê , e

)
+ cAa (ψ, e)− cA

∫
Ω

(∇σN+λ
z )e · A∇e dx

− cA
∫

Ω

eB · ∇
(
σN+λ
z e

)
dx− cA

∫
Ω

CσN+λ
z |e|2 dx.

Along the lines of the proof of [5, Prop. 8.3.1], we show using Hölder’s and Young’s inequalities∫
Ω

σN+λ
z |∇e|2 dx .

∫
Ω

σN+λ−2
z |e|2 dx

+

∫
Ω

σN+λ−2
z |ê|2 dx+

∫
Ω

σN+λ
z |∇ê|2 dx+ |a (ψ, e)| .

Hence, we turn to the term

a (ψ, e) = a (ψ − LhIhψ, e) + a (LhIhψ, gz − Lhgzh)(4.7)

and note that in the conforming case the last term vanishes by orthogonality. For the first term,
Lemma 4.8 below shows that for any δ ∈ (0, 1) it holds that

a (ψ − LhIhψ, e) . δ

∫
Ω

σN+λ
z

(
|∇e|2 + |e|2

)
dx

+ δ−1

∫
Ω

σ−N−λz

(
|∇(ψ − LhIhψ)|2 + |ψ − LhIhψ|2

)
dx

. δ

∫
Ω

σN+λ
z |∇e|2 dx+ δ−1

∫
Ω

σN+λ−2
z

(
|e|2 + |ê|2

)
dx,
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and absorption leaves the right terms. For the second term in (4.7) it remains to expand

a (LhIhψ, gz − Lhgzh) = a (LhIhψ, gz)− a (LhIhψ,Lhgzh)± ah (Ihψ, g
z
h)

= (LhIhψ | −∂iLhδz)L2(Ω) + (Ihψ | ∂iδz)L2(Ωh)

+ ah (Ihψ, g
z
h)− a (LhIhψ,Lhgzh) ,

where we used (3.4) in the second inequality, and thus the claim follows.
We state the next lemma, which was already used above, since we need it several times

more in the following computations.
LEMMA 4.8 (Auxiliary result in the proof of [5, Prop. 8.3.1]). Let ψ = σN+λ

z Lhẽ . Then∫
Ω

σ−N−λz

(
|∇(ψ − LhIhψ)|2 + |ψ − LhIhψ|2

)
dx .

∫
Ω

σN+λ−2
z

(
|e|2 + |ê|2

)
dx.

The following two lemmas are devoted to control the defects stemming from the noncon-
formity. For the sake of presentation, we bound the two errors in two separate lemmas. We
begin with the difference in the bilinear form a (·, ·).

LEMMA 4.9. For any δ > 0, it holds

|ah (Ihψ, g
z
h)− a (LhIhψ,Lhgzh)| . (δ−1h2)

∫
Ω

σN+λ
z |∇e|2 dx+ Cγ,δh

λ

+ (δ−1h2 + δ)

∫
Ω

σN+λ−2
z |e|2 dx+ δ

∫
Ω

σN+λ
z |∇ê|2 dx+ δ

∫
Ω

σN+λ−2
z |ê|2 dx,

with constants independent of h.
Proof. From Lemma 4.3 we have with k = 1, α = N + λ, and Young’s inequality∣∣ah (Ihψ, g

z
h)− a (LhIhψ,Lhgzh)

∣∣
≤ Ch

(∫
Ω

σ−N−λz |∇LhIhψ|2 + σ−N−λz |LhIhψ|2 dx
)1/2

(∫
Ω

σN+λ
z |∇Lhgzh|

2
+ σN+λ

z |Lhgzh|
2

dx
)1/2

. δ

∫
Ω

σ−N−λz |∇LhIhψ|2 dx+ δ

∫
Ω

σ−N−λz |LhIhψ|2 dx

+ δ−1h2

∫
Ω

σN+λ
z |∇Lhgzh|

2
+ σN+λ

z |Lhgzh|
2

dx

= ∆1
ψ + ∆2

ψ + ∆g.

We recall Lhgzh = gz − e and estimate

∆g ≤ δ−1h2

∫
Ω

σN+λ
z |∇e|2 + σN+λ

z |e|2 dx+ δ−1h2

∫
Ω

σN+λ
z |∇gz|2 + σN+λ

z |gz|2 dx.

Using (4.2b) and the estimate [5, eq. (8.4.3)] with the subsequent calculations, we obtain

δ−1h2

∫
Ω

σN+λ
z |∇gz|2 + σN+λ

z |gz|2 dx

. δ−1h2

∫
Ω

σN+λ−2
z |∇gz|2 dx+ δ−1h2

∫
Ω

σN+λ−4
z |gz|2 dx

. δ−1h2

∫
Ω

σN+λ
z |∇Lhδz|2 dx+ δ−1h2(γh)−2

∫
Ω

σN+λ
z |Lhδz|2 dx

. Cγ,δh
λ,
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where we used Lemma 4.6 in the last line. For the first term, we expand

∆1
ψ . δ

∫
Ω

σ−N−λz |∇ψ|2 dx+ δ

∫
Ω

σ−N−λz |∇(ψ − LhIhψ)|2 dx

. δ

∫
Ω

σN+λ
z |∇Lhẽ|2 dx+ δ

∫
Ω

σN+λ−2
z |Lhẽ|2 dx

+ δ

∫
Ω

σ−N−λz |∇(ψ − LhIhψ)|2 dx

. δ

∫
Ω

σN+λ
z |∇e|2 dx+ δ

∫
Ω

σN+λ
z |∇ê|2 dx+ δ

∫
Ω

σN+λ−2
z |e|2 dx

+ δ

∫
Ω

σN+λ−2
z |ê|2 dx,

where we used the definition of ψ = σN+λ
z Lhẽ , the representation (4.6), and Lemma 4.8.

Analogously, we obtain

∆2
ψ . δ

∫
Ω

σN+λ−2
z |e|2 dx+ δ

∫
Ω

σN+λ−2
z |ê|2 dx,(4.8)

and the assertion follows.
By similar techniques, we derive the second bound.
LEMMA 4.10. For any δ > 0, there is a constant Cγ,δ > 0 independent of h such that∣∣(LhIhψ | ∂iLhδz)L2(Ω) − (Ihψ | ∂iδz)L2(Ωh)

∣∣
. δ

∫
Ω

σN+λ
z |∇e|2 dx+ Cγ,δh

λ + δ

∫
Ω

σN+λ−2
z |e|2 dx

+ δ

∫
Ω

σN+λ
z |∇ê|2 dx+ δ

∫
Ω

σN+λ−2
z |ê|2 dx.

Proof. We employ Lemmas 4.3 and 4.6 to conclude∣∣(LhIhψ | ∂iLhδz)L2(Ω) − (Ihψ | ∂iδz)L2(Ωh)

∣∣
≤ δ

∫
Ω

σ−N−λz |LhIhψ|2 dx+ Cδh
2

∫
Ω

σN+λ
z |∂iLhδz|2 dx

. δ

∫
Ω

σ−N−λz |LhIhψ|2 dx+ Cγ,δh
λ,

and the claim follows as for ∆2
ψ in (4.8).

Combining the bounds from Proposition 4.7, Lemma 4.9, and Lemma 4.10, we have
shown, for δ, h sufficiently small, that∫

Ω

σN+λ
z |∇e|2 dx .

∫
Ω

σN+λ−2
z |e|2 dx+ Cγh

λ

+

∫
Ω

σN+λ−2
z |ê|2 dx+

∫
Ω

σN+λ
z |∇ê|2 dx.

Hence, to establish Proposition 4.5 it remains to absorb the weighted L2-norm of e and to
obtain a factor hλ for the ê terms. This is done in the following two propositions. The first
one estimates the interpolation error, which we state from [5] for completeness.

PROPOSITION 4.11. For ê = (Id− LhIh)gz it holds that∫
Ω

σN+λ−2
z |ê|2 dx+

∫
Ω

σN+λ
z |∇ê|2 dx ≤ Cγhλ,
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with some constant Cγ > 0 independent of h.
Proof. Using the interpolation estimate, one obtains∫

Ω

σN+λ−2
z |ê|2 dx+

∫
Ω

σN+λ
z |∇ê|2 dx . h2

∫
Ω

σN+λ
z |∇2g

z|2 dx.

An application of [5, Lem. 8.3.11] and Lemma 4.6 yields the result.
The proof of Proposition 4.5 is completed once we have shown the following bound,

which extends the result of [5, Prop. 8.3.5], and which is again needed due to the lack of
orthogonality.

PROPOSITION 4.12. For any ε > 0, there is γ0 > 1 and Cγ,ε such that∫
Ω

σN+λ−2
z |e|2 dx ≤ ε

∫
Ω

σN+λ
z |∇e|2 dx+ Cγ,εh

λ

for all γ ≥ γ0 = γ0(ε, λ).
Proof. We define v ∈ V as the solution of

5a (v, φ) =
(
σN+λ−2
z e | φ

)
L2(Ω)

∀φ ∈ V

and obtain ∫
Ω

σN+λ−2
z |e|2 dx = a (v, e) = a (v − LhIhv, e) + a (LhIhv, e) .

Note again that in the conforming case the second term vanishes. The first term is estimated as
in the proof of [5, Prop. 8.3.5], for any ε̃ > 0, by

(4.9) a (v − LhIhv, e) ≤ ε̃
∫

Ω

σN+λ
z

(
|∇e|2 + |e|2

)
dx

+
C

λε̃γ2

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.

Turning to the second term, using (3.4) we obtain

a (LhIhv, e) = a (LhIhv, gz)− a (LhIhv,Lhgzh)

= (LhIhv | −∂iLhδz)L2(Ω) − ah (Ihv, g
z
h)

+ ah (Ihv, g
z
h)− a (LhIhv,Lhgzh)

= (LhIhv | −∂iLhδz)L2(Ω) + (Ihv | ∂iδz)L2(Ωh)

+ ah (Ihv, g
z
h)− a (LhIhv,Lhgzh) = ∆H + ∆a.

The two terms are bounded separately in the following.
(1) We use integration by parts and apply Lemma 4.3 with k = 1 to obtain

|∆H | ≤ Ch3/2
(∫

Ω

σN+λ
z |∇Lhδz|2 + σN+λ−2

z |Lhδz|2 dx
)1/2

×
(∫

Ω

σ−N−λz |∇LhIhv|2 dx
)1/2

≤ Ch2

∫
Ω

σN+λ
z |∇Lhδz|2 + σN+λ−2

z |Lhδz|2 dx+ Ch

∫
Ω

σ−N−λz |∇LhIhv|2 dx

≤ Cγhλ + Ch

∫
Ω

σ−N−λz |∇v|2 dx+ Ch

∫
Ω

σ−N−λz |∇(v − LhIhv)|2 dx,
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where we used Lemma 4.6 in the last step. For the interpolation term, we derive as in the proof
of [5, Prop. 8.3.5] analogously to (4.9)∫

Ω

σ−N−λz |∇(v − LhIhv)|2 dx ≤ C

λγ2

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.(4.10)

Finally, we employ Lemma A.1 to obtain

h

∫
Ω

σ−N−λz |∇v|2 dx . h(γh)−1

∫
Ω

σ4−N−λ
z

∣∣∇(σN+λ−2
z e)

∣∣2 dx

. γ−1

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx,

and we collect this to derive

|∆H | . Cγh
λ +

(
h(λγ2)−1 + γ−1

) ∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.(4.11)

(2) We employ Lemma 4.3 and obtain with k = 1 and Young’s inequality

|∆a| ≤ δh3/2

∫
Ω

σN+λ−3/2
z

(
|∇Lhgzh|

2
+ |Lhgzh|

2)
dx

+ δ−1h1/2

∫
Ω

σ−N−λ+3/2
z

(
|∇LhIhv|2 + |LhIhv|2

)
dx.

For the first term we obtain as in Lemma 4.9 using Lhgzh = gz − e and h ≤ σz(x)

δh3/2

∫
Ω

σN+λ−3/2
z |∇Lhgzh|

2
dx

≤ δh3/2

∫
Ω

σN+λ−3/2
z |∇e|2 dx+ δh3/2

∫
Ω

σN+λ−3/2
z |∇gz|2 dx

≤ δ
∫

Ω

σN+λ
z |∇e|2 dx+ δh3/2

∫
Ω

σN+λ−3/2
z |∇gz|2 dx.

With Lemma A.3, α = 1/2, and f = Lhδz we obtain

δh3/2

∫
Ω

σN+λ−3/2
z |∇gz|2 dx ≤ δh3/2

∫
Ω

σN+λ+1/2
z |∇Lhδz|2 dx

+ δh3/2(γh)−3/2

∫
Ω

σN+λ
z |Lhδz|2 dx . Cγh

λ,

where we used Lemma 4.6 in the last step. Along the same lines, we deduce

δh3/2

∫
Ω

σN+λ−3/2
z |Lhgzh|

2
dx . δh3/2

∫
Ω

σN+λ−2
z |e|2 dx+ Cγh

λ.

Further, for the second term we expand

δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |∇LhIhv|2 dx

≤ δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |∇(v − LhIhv)|2 dx+ δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |∇v|2 dx,
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and the first part is treated by an interpolation estimate as in (4.10) with (4.2b)

δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |∇(v − LhIhv)|2 dx .

h1/2

δλγ2

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.

So it remains to bound by Lemma A.2 with α = 1/2 and f = σN+λ−2
z e

δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |∇v|2 dx ≤ Ch1/2(δλ)−1(γh)−1/2

∫
Ω

σ4−N−λ
z |∇f |2 dx

≤ C(δλγ)−1

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.

By the same arguments, we show

δ−1h1/2

∫
Ω

σ−N−λ+3/2
z |LhIhv|2 dx ≤ h1/2

δλγ2

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx

+ C(δλγ)−1

∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx,

and collecting the above estimates gives

(4.12) ∆a . Cγh
λ +

(
δ +

h1/2

δλγ2
+

1

δλγ

) ∫
Ω

σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx.

We complete the proof using (4.9), (4.11), and (4.12), and absorb the right-hand side for
ε̃ and λ fixed by first choosing some δ > 0 sufficiently small and then some sufficiently large
γ ≥ γ0 = γ0(ε̃, λ, δ).

Collecting the above lemmas, we have finally shown Proposition 4.5 and hence, by
Lemma 4.4, also Lemma 3.1.

4.3. Proof of Lemma 3.2. We close this section with the proof of the bound for the
solution gz of the regularized delta function. The key tool is the generalized version of the
narrow band inequality shown for p = 2 in [9, Lem. 4.10]. We recall Uδ = {x ∈ Ω |
dist(x,Γ) ≤ δ}. Then for any 1 ≤ p < ∞, there is a constant Cp > 0 such that for any
ϕ ∈W 1,p(Ω) it holds

(4.13) ‖ϕ‖Lp(Uδ)
≤ Cp δ1/p ‖ϕ‖W 1,p(Ω) .

We apply (4.13) with p = 1 and δ = h and obtain

‖gz‖W 1,1(Uh) . h ‖gz‖W 2,1(Ω) .(4.14)

Note that the second term in the lemma is estimated against the right-hand side in (4.14) as
well. Finally, we deduce by (4.3) and the elliptic regularity shown in [5, eq. (8.3.10)] the
bound

‖∇2g
z‖2L1(Ω) . h−λ

∫
Ω

σN+λ
z |∇2g

z|2 dx . h−λhλ−2 . h−2,

which also holds for the lower-order derivatives, and thus the assertion follows.

Appendix A. In this section, we collect the regularity results used in the above analysis.
These are taken from [5, Chap. 8] and stated here in a slightly more general version. We recall
the weight defined in (4.1) as

σz(x) =
(
|x− z|2 + ζ2

) 1
2 , ζ = γh.
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The first result is an extension of [5, Lem. 8.3.7], where the Hessian is replaced by the gradient,
which allows us to obtain a factor h−1 instead of h−2.

LEMMA A.1. Let v ∈ V be the solution of

a (v, φ) = (f | φ)H , ∀φ ∈ V

for f ∈ H1
0 (Ω). Then, we have for λ > 0 sufficiently small∫

Ω

σ−N−λz |∇v|2 dx ≤ Cλ−1ζ−1

∫
Ω

σ4−N−λ
z |∇f |2 dx.

Proof. In the proof of [5, Lem. 8.3.7], one first estimates by Hölder’s inequality∫
Ω

σ−N−λz |∇v|2 dx . ζ−λ−N/p ‖∇v‖2L2p .

Once, we have shown that for any p, s > 1

‖∇v‖L2p . ‖∇f‖L1 . ‖∇f‖Ls ,(A.1)

we conclude with s = 2pN
N+3p

:= 2
q ∈ (1, 2) that

‖∇f‖sLs =

∫
Ω

|∇f |2/q dx =

∫
Ω

σ
− 4−N−λ

q
z σ

4−N−λ
q

z |∇f |2/q dx

≤
(∫

Ω

σ
−(4−N−λ)

q′

q
z dx

)1/q′(∫
Ω

σ4−N−λ
z |∇f |2 dx

)1/q

and hence

‖∇f‖2Ls =
(∫

Ω

|∇f |2/q dx
)q
≤
(∫

Ω

σ
−(4−N−λ)

q′

q
z dx

)q/q′ ∫
Ω

σ4−N−λ
z |∇f |2 dx.

With q
q′ = q − 1 we have by (4.3)

(∫
Ω

σ
−(4−N−λ)

q′

q
z dx

)q/q′
=
(∫

Ω

σ−(4−N−λ)/(q−1)
z dx

)q−1

≤ Cζ−(4−N−λ)+N(q−1) = Cζ−1+λ+N
p

since

−(4−N − λ) +N(q − 1) = −4 +N + λ+N(
N + 3p

pN
− 1) = −1 + λ+

N

p
< 0

for λ < 1− N
p , and hence the claim follows.

It remains to prove (A.1). We employ Theorem 2.1 and [1, Thm. 4.12] to obtain

‖∇v‖L2p . ‖v‖W 2,N/2 . ‖f‖L3/2 . ‖f‖W 1,1 . ‖∇f‖L1 ,

where we use Case B (mp = N ) for the first inequality, Case C (m = p = 1) for the third,
and the Poincaré inequality for the last.
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The next lemma is a straightforward extension of [5, Lem 8.3.7], where the case α = 2 is
derived.

LEMMA A.2. Let v ∈ V be the solution of

a (v, φ) = (f | φ)H , ∀φ ∈ V.

Then for 0 < α ≤ 2 and λ > 0 sufficiently small, we have∫
Ω

σ−N−λ+2−α
z

(
|v|2 + |∇v|2 + |∇2v|2

)
dx ≤ Cλ−1ζ−α

∫
Ω

σ4−N−λ
z |∇f |2 dx.

Proof. In order to adapt the proof, it is sufficient to guarantee the existence of a p ∈ (1,∞)
such that the conditions

p >
N

2− λ
, p <

N

N − 2
,

and, in order to apply (4.3),

(−N − λ+ 2− α)p′ +N < 0 ⇐⇒ N

p
> 2− α− λ

are all satisfied. For 2 ≤ α+ λ, the latter condition is void. In the other cases, it is equivalent
to

p <
N

2− λ− α
,

and since α > 0, such a p can be found.
The following lemma builds upon the estimates in [5, Lem. 8.3.11], where the result is

shown for α = 0.
LEMMA A.3. Let v ∈ V be the solution of

a (φ, v) = (ν · ∇f | φ)H , ∀φ ∈ V.

Then for λ > 0 sufficiently small and 0 ≤ α < 1− λ, we have∫
Ω

σN+λ−2+α
z |∇v|2 + σN+λ−4+α

z |v|2 dx .
∫

Ω

σN+λ+α
z |∇f |2 dx

+ ζ−2+α

∫
Ω

σN+λ
z |f |2 dx.

Proof. We use the above equation with φ = σN+λ−2+α
z v and compute as in the proof of

Proposition 4.7,∫
Ω

σN+λ−2+α
z |∇v|2 dx

≤ CAa
(
σN+λ−2+α
z v, v

)
− CA

∫
Ω

(∇σN+λ−2+α
z )v · A∇v dx

− CA
∫

Ω

vB · ∇
(
σN+λ−2+α
z v

)
dx− CA

∫
Ω

C σN+λ−2+α
z |v|2 dx

.
∣∣(ν · ∇f | σN+λ−2+α

z v
)
H

∣∣+ a

∫
Ω

σN+λ−2+α
z |∇v|2 dx+ 1

a

∫
Ω

σN+λ−4+α
z |v|2 dx

.
∫

Ω

σN+λ+α
z |∇f |2 dx+ a

∫
Ω

σN+λ−2+α
z |∇v|2 dx+ 1

a

∫
Ω

σN+λ−4+α
z |v|2 dx,
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and by absorption, it only remains to bound the last term. We claim that for α < 1− λ∫
Ω

σN+λ−4+α
z |v|2 dx ≤ Cζ−2+α

∫
Ω

σN+λ
z |f |2 dx,

which can be adapted from the proof of [5, Lem. 8.3.11], starting with [5, Equation (8.4.3)], if
one can find r > 1 with

r <
2N

2N − 2 + λ+ α
,

which is possible since α+ λ < 1.
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