Electromechanical transition in quantum dots | |
Article | |
关键词: NANOTUBE MECHANICAL RESONATORS; NEGATIVE DIFFERENTIAL RESISTANCE; SINGLE-MOLECULE; CARBON NANOTUBES; SYSTEMS; OSCILLATOR; RESOLUTION; TRANSPORT; JUNCTIONS; | |
DOI : 10.1103/PhysRevB.94.125417 | |
来源: SCIE |
【 摘 要 】
The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015)] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.
【 授权许可】
Free