Emerging chiral optics from chiral interfaces | |
Article | |
关键词: LINEAR-POLARIZATION CONVERSION; GRAPHENE; PLASMONS; BANDS; POLARITONS; ANGLES; LIGHT; | |
DOI : 10.1103/PhysRevB.103.195405 | |
来源: SCIE |
【 摘 要 】
Twisted atomic bilayers are emerging platforms for manipulating chiral light-matter interaction at the extreme nanoscale, due to their inherent magnetoelectric responses induced by the finite twist angle and quantum interlayer coupling between the atomic layers. Recent studies have reported the direct correspondence between twisted atomic bilayers and chiral metasurfaces, which features a chiral surface conductivity, in addition to the electric and magnetic surface conductivities. However, far-field chiral optics in light of these constitutive conductivities remains unexplored. Within the framework of the full Maxwell equations, we find that the chiral surface conductivity can be exploited to realize perfect polarization transformation between linearly polarized light. Remarkably, such an exotic chiral phenomenon can occur either for the reflected or transmitted light. Moreover, we reveal that all transmitted light through the judiciously designed chiral surface conductivity can always have the polarization different from the incident light, irrespective of the incident angle.
【 授权许可】
Free