期刊论文详细信息
Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations
Article
关键词: ELECTRONIC-STRUCTURE;    IRON CHALCOGENIDES;    PRESSURE;    TEMPERATURE;    FRUSTRATION;    PNICTIDES;    DYNAMICS;   
DOI  :  10.1103/PhysRevB.94.035108
来源: SCIE
【 摘 要 】

Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear spin configurations are the most energetically favorable over the explored pressure range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature T-c is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of the local charge compressibility and the orbital occupation as described by the QMC many-body wave function, which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced T-c in FeSe and that higher T-c is associated with nearness to a crossover between collinear and bicollinear ordering.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:2次