期刊论文详细信息
Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations
Article
关键词: SINGLE-QUANTUM-DOT;    REDUCED DENSITY-MATRICES;    TENSOR PROPAGATOR;    DYNAMICS;    SYSTEM;    GENERATION;    EVOLUTION;    COHERENT;    LIGHT;    PAIRS;   
DOI  :  10.1103/PhysRevB.96.201201
来源: SCIE
【 摘 要 】

The generation of photons in a microcavity coupled to a laser-driven quantum dot interacting with longitudinal acoustic (LA) phonons is studied in the regime of simultaneously strong driving and strong dot-cavity coupling. The stationary cavity photon number is found to depend in a nontrivial way on the detuning between the laser and the exciton transition in the dot. In particular, the maximal efficiency of the cavity feeding is obtained for detunings corresponding to transition energies between cavity-dressed states with excitation numbers larger than one. Phonons significantly enhance the cavity feeding at large detunings. In the strong-driving, strong-coupling limit, the photon statistics is highly non-Poissonian. While without phonons a double-peaked structure in the photon distribution is predicted, phonons make the photon statistics thermal-like with very high effective temperatures similar to 10(5) K, even for lowphonon temperatures similar to 4 K. These results were obtained by numerical calculations where the driving, the dot-cavity coupling, and the dot-phonon interactions are taken into account without approximations. This is achieved by a reformulation of an exact iterative path-integral scheme which is applicable to a large class of quantum-dissipative systems and which in our case reduces the numerical demands by 15 orders of magnitude.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次