期刊论文详细信息
Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation
Article
关键词: REDUCED DENSITY-MATRICES;    TENSOR PROPAGATOR;    EDGE SINGULARITY;    TIME EVOLUTION;    ANDERSON MODEL;    LONG-TIME;    SYSTEMS;    DYNAMICS;    APPROXIMATION;    EQUILIBRIUM;   
DOI  :  10.1103/PhysRevB.82.205323
来源: SCIE
【 摘 要 】

We develop an iterative, numerically exact approach for the treatment of nonequilibrium quantum transport and dissipation problems that avoids the real-time sign problem associated with standard Monte Carlo techniques. The method requires a well-defined decorrelation time of the nonlocal influence functional for proper convergence to the exact limit. Since finite decorrelation times may arise either from temperature or from a voltage drop at zero temperature, the approach is well suited for the description of the real-time dynamics of single-molecule devices and quantum dots driven to a steady state via interaction with two or more electron leads. We numerically investigate two nontrivial models: the evolution of the nonequilibrium population of a two-level system coupled to two electronic reservoirs, and quantum transport in the nonequilibrium Anderson model. For the latter case, two distinct formulations are described. Results are compared to those obtained by other techniques.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:4次