| Large-gap quantum anomalous Hall states induced by functionalizing buckled Bi-III monolayer/A(l2)O(3) | |
| Article | |
| 关键词: 2-DIMENSIONAL TOPOLOGICAL INSULATORS; REALIZATION; TRANSITION; PREDICTION; BI2SE3; FERROMAGNETISM; SCHEMES; FILMS; | |
| DOI : 10.1103/PhysRevB.106.125151 | |
| 来源: SCIE | |
【 摘 要 】
Chiral edge modes inherent to the topological quantum anomalous Hall (QAH) effect are a pivotal topic of contemporary condensed matter research aiming at future quantum technology and application in spintronics. A large topological gap is vital to protecting against thermal fluctuations and thus enabling a higher operating temperature. From first-principles calculations, we propose Al2O3 as an ideal substrate for atomic monolayers consisting of Bi and group-III elements, in which a large-gap quantum spin Hall effect can be realized. Additional half-passivation with nitrogen then suggests a topological phase transition to a large-gap QAH insulator. By effective tight-binding modeling, we demonstrate that Bi-III monolayer/Al2O3 is dominated by px, py orbitals, with subdominant pz orbital contributions. The topological phase transition into the QAH is induced by Zeeman splitting, where the off-diagonal spin exchange does not play a significant role. The effective model analysis promises utility far beyond Bi-III monolayer/Al2O3, as it should generically apply to systems dominated by px, py orbitals with a band inversion at Gamma .
【 授权许可】
Free