期刊论文详细信息
Probing the semiconductor to semimetal transition in InAs/GaSb double quantum wells by magneto-infrared spectroscopy
Article
关键词: ELECTRON-HOLE SYSTEM;    CYCLOTRON-RESONANCE;    GROUND-STATE;    GAP;    SUPERLATTICES;    HETEROSTRUCTURES;    ENHANCEMENT;    FIELDS;   
DOI  :  10.1103/PhysRevB.95.045116
来源: SCIE
【 摘 要 】

We perform a magnetoinfrared spectroscopy study of the semiconductor to semimetal transition of InAs/GaSb double quantum wells from the normal to the inverted state. We show that owing to the low carrier density of our samples, the magnetoabsorption spectra evolve from a single cyclotron resonance peak in the normal state to multiple absorption peaks in the inverted state with distinct magnetic field dependence. Using an eight-band Pidgeon-Brown model, we explain all the major absorption peaks observed in our experiment. We demonstrate that the semiconductor to semimetal transition can be realized by manipulating the quantum confinement, the strain, and the magnetic field. Our work paves the way for band engineering of optimal InAs/GaSb structures for realizing novel topological states as well as for device applications in the terahertz regime.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:2次