Magnetic Bloch theorem and reentrant flat bands in twisted bilayer graphene at 2? flux | |
Article | |
关键词: BILBAO CRYSTALLOGRAPHIC SERVER; MOIRE BANDS; ELECTRONS; GAS; | |
DOI : 10.1103/PhysRevB.106.085140 | |
来源: SCIE |
【 摘 要 】
Bloch's theorem is the centerpiece of topological band theory, which itself has defined an era of quantum materials research. However, Bloch's theorem is broken by a perpendicular magnetic field, making it difficult to study topological systems in strong flux. For the first time, moire materials have made this problem experimentally relevant, and its solution is the focus of this paper. We construct gauge-invariant irreps of the magnetic translation group at 2n flux on infinite boundary conditions, allowing us to give analytical expressions in terms of the Siegel theta function for the magnetic Bloch Hamiltonian, non-Abelian Wilson loop, and many-body form factors. We illustrate our formalism using a simple square lattice model and the Bistritzer-MacDonald Hamiltonian of twisted bilayer graphene, obtaining reentrant ground states at 2n flux under the Coulomb interaction.
【 授权许可】
Free