N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-alpha on calcium transients and contraction in adult rat cardiomyocytes | |
Article | |
关键词: NEUTRAL SPHINGOMYELINASE; CARDIAC MYOCYTES; TNF-ALPHA; PHOSPHOLAMBAN PHOSPHORYLATION; OXIDATIVE STRESS; HEART-FAILURE; CELL-DEATH; GLUTATHIONE; APOPTOSIS; CARDIOMYOPATHY; | |
DOI : 10.1161/01.CIR.0000109499.00587.FF | |
来源: SCIE |
【 摘 要 】
Background - The negative effect of tumor necrosis factor-alpha (TNF-alpha) on heart contraction, which is mediated by sphingosine, is a major component in heart failure. Because the cellular level of glutathione may limit sphingosine production via the inhibition of the Mg-dependent neutral sphingomyelinase (N-SMase), we hypothesized that cardiac glutathione status might determine the negative contractile response to TNF-alpha. Methods and Results - We examined the effects of TNF-alpha in isolated cardiomyocytes obtained from control rats or rats that were given the glutathione precursor N-acetylcysteine (NAC, 100 mg IP per animal). In cardiomyocytes obtained from control rats, 25 ng/mL TNF-alpha increased reactive oxygen species generation and N-SMase activity (500% and 34% over basal, respectively) and decreased the amplitude of [Ca2+](i) in response to electrical stimulation (22% below basal). NAC treatment increased cardiac glutathione content by 42%. In cardiomyocytes obtained from NAC-treated rats, 25 ng/mL TNF-alpha had no effect on reactive oxygen species production or N-SMase activity but increased the amplitude of [Ca2+](i) transients and contraction in response to electrical stimulation by 40% to 50% over basal after 20 minutes. This was associated with a hastened relaxation (20% reduction in t(1/2) compared with basal) and an increased phosphorylation of both Ser(16)- and Thr(17)-phospholamban residues (260% and 115% of maximal isoproterenol effect, respectively). Conclusions - It is concluded that cardiac glutathione status, by controlling N-SMase activation, determines the severity of the adverse effects of TNF-alpha on heart contraction. Glutathione supplementation may therefore provide therapeutic benefits for vulnerable hearts.
【 授权许可】
Free