First-principles study of illite-smectite and implications for clay mineral systems | |
Article | |
关键词: INTERPARTICLE DIFFRACTION; MECHANISMS; RECTORITE; DIAGENESIS; SANDSTONES; ZONE; | |
DOI : 10.1038/nature01155 | |
来源: SCIE |
【 摘 要 】
Illite-smectite interstratified clay minerals are ubiquitous in sedimentary basins and they have been linked to the maturation, migration and trapping of hydrocarbons(1), rock cementation(2), evolution of porewater chemistry during diagenesis(3) and the development of pore pressure(4). But, despite the importance of these clays, their structures are controversial. Two competing models exist, each with profoundly different consequences for the understanding of diagenetic processes: model A views such interstratified clays as a stacking of layers identical to endmember illite and smectite layers, implying discrete and independently formed units (fundamental particles)(5), whereas model B views the clays as composed of crystallites with a unique structure that maintains coherency over much greater distances, in line with local charge balance about interlayers(6). Here we use first-principles density-functional theory to explore the energetics and structures of these two models for an illite-smectite interstratified clay mineral with a ratio of 1:1 and a Reichweite parameter of 1. We find that the total energy of model B is 2.3 kJ atom(-1) mol(-1) lower than that of model A, and that this energy difference can be traced to structural distortions in model A due to local charge imbalance. The greater stability of model B requires re-evaluation of the evolution of the smectite-to-illite sequence of clay minerals, including the nature of coexisting species, stability relations, growth mechanisms and the model of fundamental particles.
【 授权许可】
Free