期刊论文详细信息
BMC Bioinformatics
A generalized covariate-adjusted top-scoring pair algorithm with applications to diabetic kidney disease stage classification in the Chronic Renal Insufficiency Cohort (CRIC) Study
Research
Robert G. Nelson1  Jiang He2  Ana C. Ricardo3  Jeffery C. Fink4  Hernan Rincon-Choles5  Brian Kwan6  Loki Natarajan6  Karen Messer6  Daniel Montemayor7  Hongping Ye7  Kumar Sharma7  Chi-yuan Hsu8  Tobias Fuhrer9  Minya Pu1,10  Jing Zhang1,10  Vallabh O. Shah1,11 
[1] Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA;Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine and Tulane University Translational Science Institute,, New Orleans, LA, USA;Department of Medicine, University of Illinois, Chicago, IL, USA;Department of Medicine, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA;Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA;Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA;Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA;Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA;Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, TX, USA;Division of Nephrology, University of California, San Francisco School of Medicine, San Francisco, CA, USA;Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA;University of New Mexico Health Sciences Center, Albuquerque, NM, USA;
关键词: Biomarker;    Classification;    Feature selection;    Kidney disease;    Metabolomics;    Order statistics;    Ranking algorithm;   
DOI  :  10.1186/s12859-023-05171-w
 received in 2022-01-31, accepted in 2023-02-02,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe growing amount of high dimensional biomolecular data has spawned new statistical and computational models for risk prediction and disease classification. Yet, many of these methods do not yield biologically interpretable models, despite offering high classification accuracy. An exception, the top-scoring pair (TSP) algorithm derives parameter-free, biologically interpretable single pair decision rules that are accurate and robust in disease classification. However, standard TSP methods do not accommodate covariates that could heavily influence feature selection for the top-scoring pair. Herein, we propose a covariate-adjusted TSP method, which uses residuals from a regression of features on the covariates for identifying top scoring pairs. We conduct simulations and a data application to investigate our method, and compare it to existing classifiers, LASSO and random forests.ResultsOur simulations found that features that were highly correlated with clinical variables had high likelihood of being selected as top scoring pairs in the standard TSP setting. However, through residualization, our covariate-adjusted TSP was able to identify new top scoring pairs, that were largely uncorrelated with clinical variables. In the data application, using patients with diabetes (n = 977) selected for metabolomic profiling in the Chronic Renal Insufficiency Cohort (CRIC) study, the standard TSP algorithm identified (valine-betaine, dimethyl-arg) as the top-scoring metabolite pair for classifying diabetic kidney disease (DKD) severity, whereas the covariate-adjusted TSP method identified the pair (pipazethate, octaethylene glycol) as top-scoring. Valine-betaine and dimethyl-arg had, respectively, ≥ 0.4 absolute correlation with urine albumin and serum creatinine, known prognosticators of DKD. Thus without covariate-adjustment the top-scoring pair largely reflected known markers of disease severity, whereas covariate-adjusted TSP uncovered features liberated from confounding, and identified independent prognostic markers of DKD severity. Furthermore, TSP-based methods achieved competitive classification accuracy in DKD to LASSO and random forests, while providing more parsimonious models.ConclusionsWe extended TSP-based methods to account for covariates, via a simple, easy to implement residualizing process. Our covariate-adjusted TSP method identified metabolite features, uncorrelated from clinical covariates, that discriminate DKD severity stage based on the relative ordering between two features, and thus provide insights into future studies on the order reversals in early vs advanced disease states.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305158597615ZK.pdf 1729KB PDF download
Fig. 1 816KB Image download
Fig. 2 206KB Image download
MediaObjects/13011_2023_522_MOESM1_ESM.pdf 144KB PDF download
Fig. 2 1939KB Image download
Fig. 3 3120KB Image download
Fig. 4 164KB Image download
Fig. 1 632KB Image download
MediaObjects/40345_2023_287_MOESM1_ESM.docx 151KB Other download
Fig. 1 516KB Image download
Fig. 3 298KB Image download
40708_2023_185_Article_IEq3.gif 1KB Image download
40708_2023_185_Article_IEq5.gif 1KB Image download
MediaObjects/42004_2023_821_MOESM1_ESM.pdf 893KB PDF download
Fig. 1 242KB Image download
MediaObjects/42004_2023_821_MOESM5_ESM.xlsx 12KB Other download
40708_2023_185_Article_IEq24.gif 1KB Image download
13690_2023_1029_Article_IEq9.gif 1KB Image download
13690_2023_1029_Article_IEq12.gif 1KB Image download
13690_2023_1029_Article_IEq15.gif 1KB Image download
40249_2023_1061_Article_IEq18.gif 1KB Image download
40708_2023_185_Article_IEq64.gif 1KB Image download
Fig. 2 1290KB Image download
MediaObjects/42004_2023_840_MOESM3_ESM.rar 41KB Other download
Fig. 1 4561KB Image download
Fig. 7 2544KB Image download
Fig. 1 613KB Image download
Fig. 4 982KB Image download
Fig. 22 53KB Image download
Fig. 1 118KB Image download
MediaObjects/13750_2019_181_MOESM2_ESM.docx 20KB Other download
MediaObjects/13041_2023_1006_MOESM2_ESM.docx 18KB Other download
MediaObjects/12888_2023_4604_MOESM1_ESM.xlsx 21KB Other download
Fig. 2 2277KB Image download
Fig. 4 2092KB Image download
Fig. 2 881KB Image download
MediaObjects/13045_2019_773_MOESM5_ESM.docx 616KB Other download
Fig. 1 207KB Image download
Fig. 1 116KB Image download
MediaObjects/13690_2022_1015_MOESM1_ESM.docx 185KB Other download
Fig. 1 409KB Image download
Fig. 1 336KB Image download
Fig. 2 94KB Image download
Fig. 2 264KB Image download
Fig. 2 595KB Image download
Fig. 1 454KB Image download
Fig. 7 103KB Image download
MediaObjects/10194_2023_1551_MOESM1_ESM.docx 762KB Other download
Fig. 4 2590KB Image download
Fig. 3 439KB Image download
Fig. 1 178KB Image download
Fig. 3 101KB Image download
MediaObjects/12888_2022_4505_MOESM1_ESM.doc 28KB Other download
Fig. 5 658KB Image download
Fig. 2 497KB Image download
MediaObjects/42004_2023_824_MOESM4_ESM.pdf 2607KB PDF download
Fig. 6 855KB Image download
Fig. 1 19KB Image download
Fig. 2 29KB Image download
Fig. 7 2327KB Image download
Fig. 2 519KB Image download
13690_2023_1046_Article_IEq1.gif 1KB Image download
Fig. 1 37KB Image download
Fig. 8 3631KB Image download
Fig. 5 480KB Image download
13690_2023_1046_Article_IEq4.gif 1KB Image download
Fig. 3 52KB Image download
13690_2023_1046_Article_IEq7.gif 1KB Image download
Fig. 5 58KB Image download
MediaObjects/41408_2023_791_MOESM1_ESM.pptx 985KB Other download
Fig. 3 186KB Image download
MediaObjects/12951_2023_1811_MOESM1_ESM.docx 4443KB Other download
Fig. 2 231KB Image download
Fig. 1 365KB Image download
Fig.1 4966KB Image download
Fig. 2 433KB Image download
Fig. 4 1470KB Image download
MediaObjects/41408_2023_791_MOESM2_ESM.pptx 1289KB Other download
MediaObjects/12902_2023_1281_MOESM1_ESM.docx 27KB Other download
Fig. 3 87KB Image download
Fig. 1 645KB Image download
Fig. 4 845KB Image download
Fig. 2 974KB Image download
MediaObjects/13041_2023_999_MOESM1_ESM.pptx 226KB Other download
923KB Image download
Fig. 2 441KB Image download
Fig. 1 411KB Image download
Fig. 6 729KB Image download
Fig. 13 1590KB Image download
Fig. 3 6449KB Image download
MediaObjects/12954_2023_753_MOESM4_ESM.docx 16KB Other download
MediaObjects/12954_2023_753_MOESM5_ESM.docx 16KB Other download
MediaObjects/12974_2023_2741_MOESM1_ESM.docx 1387KB Other download
Fig. 7 262KB Image download
1043KB Image download
Fig. 1 131KB Image download
Fig. 8 80KB Image download
Fig. 4 899KB Image download
Fig. 9 269KB Image download
12936_2023_4464_Article_IEq7.gif 1KB Image download
40854_2023_460_Article_IEq15.gif 1KB Image download
Fig. 10 79KB Image download
Fig. 1 176KB Image download
Fig. 11 426KB Image download
Fig. 5 212KB Image download
Fig. 2 933KB Image download
12936_2023_4464_Article_IEq13.gif 1KB Image download
MediaObjects/42004_2023_817_MOESM5_ESM.cif 1563KB Other download
Fig. 13 275KB Image download
Fig. 1 85KB Image download
Fig. 9 660KB Image download
40517_2023_248_Article_IEq1.gif 1KB Image download
40517_2023_248_Article_IEq2.gif 1KB Image download
40517_2023_248_Article_IEq3.gif 1KB Image download
40517_2023_248_Article_IEq4.gif 1KB Image download
40517_2023_248_Article_IEq5.gif 1KB Image download
40517_2023_248_Article_IEq7.gif 1KB Image download
40517_2023_248_Article_IEq8.gif 1KB Image download
40517_2023_248_Article_IEq9.gif 1KB Image download
40517_2023_248_Article_IEq10.gif 1KB Image download
40517_2023_248_Article_IEq11.gif 1KB Image download
40517_2023_248_Article_IEq28.gif 1KB Image download
40517_2023_248_Article_IEq29.gif 1KB Image download
40517_2023_248_Article_IEq30.gif 1KB Image download
40517_2023_248_Article_IEq31.gif 1KB Image download
Fig. 4 1300KB Image download
MediaObjects/41408_2023_791_MOESM4_ESM.pptx 365KB Other download
40517_2023_248_Article_IEq33.gif 1KB Image download
40517_2023_248_Article_IEq34.gif 1KB Image download
40517_2023_248_Article_IEq35.gif 1KB Image download
Fig. 1 354KB Image download
40517_2023_248_Article_IEq37.gif 1KB Image download
MediaObjects/12888_2023_4613_MOESM1_ESM.docx 17KB Other download
MediaObjects/41408_2023_791_MOESM5_ESM.pptx 156KB Other download
40517_2023_248_Article_IEq40.gif 1KB Image download
40517_2023_248_Article_IEq41.gif 1KB Image download
Fig. 5 3721KB Image download
Fig. 4 699KB Image download
MediaObjects/41408_2023_791_MOESM6_ESM.xlsx 11KB Other download
MediaObjects/12864_2023_9176_MOESM5_ESM.xlsx 16KB Other download
40854_2022_419_Article_IEq5.gif 1KB Image download
Fig. 2 458KB Image download
Fig. 1 538KB Image download
40854_2023_456_Article_IEq31.gif 1KB Image download
MediaObjects/12974_2023_2735_MOESM1_ESM.docx 2084KB Other download
【 图 表 】

40854_2023_456_Article_IEq31.gif

Fig. 1

Fig. 2

40854_2022_419_Article_IEq5.gif

Fig. 4

Fig. 5

40517_2023_248_Article_IEq41.gif

40517_2023_248_Article_IEq40.gif

40517_2023_248_Article_IEq37.gif

Fig. 1

40517_2023_248_Article_IEq35.gif

40517_2023_248_Article_IEq34.gif

40517_2023_248_Article_IEq33.gif

Fig. 4

40517_2023_248_Article_IEq31.gif

40517_2023_248_Article_IEq30.gif

40517_2023_248_Article_IEq29.gif

40517_2023_248_Article_IEq28.gif

40517_2023_248_Article_IEq11.gif

40517_2023_248_Article_IEq10.gif

40517_2023_248_Article_IEq9.gif

40517_2023_248_Article_IEq8.gif

40517_2023_248_Article_IEq7.gif

40517_2023_248_Article_IEq5.gif

40517_2023_248_Article_IEq4.gif

40517_2023_248_Article_IEq3.gif

40517_2023_248_Article_IEq2.gif

40517_2023_248_Article_IEq1.gif

Fig. 9

Fig. 1

Fig. 13

12936_2023_4464_Article_IEq13.gif

Fig. 2

Fig. 5

Fig. 11

Fig. 1

Fig. 10

40854_2023_460_Article_IEq15.gif

12936_2023_4464_Article_IEq7.gif

Fig. 9

Fig. 4

Fig. 8

Fig. 1

Fig. 7

Fig. 3

Fig. 13

Fig. 6

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 4

Fig. 2

Fig.1

Fig. 1

Fig. 2

Fig. 3

Fig. 5

13690_2023_1046_Article_IEq7.gif

Fig. 3

13690_2023_1046_Article_IEq4.gif

Fig. 5

Fig. 8

Fig. 1

13690_2023_1046_Article_IEq1.gif

Fig. 2

Fig. 7

Fig. 2

Fig. 1

Fig. 6

Fig. 2

Fig. 5

Fig. 3

Fig. 1

Fig. 3

Fig. 4

Fig. 7

Fig. 1

Fig. 2

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 2

Fig. 4

Fig. 2

Fig. 1

Fig. 22

Fig. 4

Fig. 1

Fig. 7

Fig. 1

Fig. 2

40708_2023_185_Article_IEq64.gif

40249_2023_1061_Article_IEq18.gif

13690_2023_1029_Article_IEq15.gif

13690_2023_1029_Article_IEq12.gif

13690_2023_1029_Article_IEq9.gif

40708_2023_185_Article_IEq24.gif

Fig. 1

40708_2023_185_Article_IEq5.gif

40708_2023_185_Article_IEq3.gif

Fig. 3

Fig. 1

Fig. 1

Fig. 4

Fig. 3

Fig. 2

Fig. 2

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  文献评价指标  
  下载次数:13次 浏览次数:4次