期刊论文详细信息
Journal of Mathematics in Industry
Segmentation and morphological analysis of amyloid fibrils from cryo-EM image data
Research
Matthias Schmidt1  Akanksha Bansal1  Peter Benedikt Pfeiffer1  Marcus Fändrich1  Matthias Weber2  Matthias Neumann2  Volker Schmidt2 
[1] Institute of Protein Biochemistry, Ulm University, Ulm, Germany;Institute of Stochastics, Ulm University, Ulm, Germany;
关键词: Cryo-EM image data;    Amyloid fibril;    Cross-over distance;    Fibril width;    Single-object segmentation;    Convolutional neural network;   
DOI  :  10.1186/s13362-023-00131-8
 received in 2022-06-24, accepted in 2023-01-19,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Fast assessment of the composition of amyloid fibril samples from cryo-EM data poses a serious challenge to existing image analysis tools. We develop a method for automated segmentation of single fibrils requiring only little user input during the training process. This is achieved by combining a binary segmentation based on a convolutional neural network with preprocessing steps to allow for easy manual generation of training data. Subsequent skeletonization turns the binary segmentation into a single-object segmentation. Then, we compute properties of shape and texture of each segmented fibril, including an estimation of the fibril width. We discuss the composition of the sample based on the distributions of these computed properties and outline how a classification of fibril morphologies might be performed using these properties.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305153177216ZK.pdf 1766KB PDF download
Fig. 7 745KB Image download
Fig. 6 2907KB Image download
MediaObjects/13068_2023_2271_MOESM1_ESM.pdf 2087KB PDF download
Fig. 2 621KB Image download
40708_2023_185_Article_IEq2.gif 1KB Image download
Fig. 3 784KB Image download
Fig. 2 594KB Image download
MediaObjects/40360_2023_650_MOESM1_ESM.docx 19KB Other download
Fig. 4 1044KB Image download
Fig. 4 420KB Image download
Fig. 3 186KB Image download
Fig. 7 439KB Image download
MediaObjects/42004_2023_821_MOESM1_ESM.pdf 893KB PDF download
12938_2023_1069_Article_IEq36.gif 1KB Image download
40708_2023_185_Article_IEq12.gif 1KB Image download
Fig. 8 2156KB Image download
Fig. 1 115KB Image download
40708_2023_185_Article_IEq14.gif 1KB Image download
MediaObjects/12974_2023_2721_MOESM2_ESM.docx 4622KB Other download
【 图 表 】

40708_2023_185_Article_IEq14.gif

Fig. 1

Fig. 8

40708_2023_185_Article_IEq12.gif

12938_2023_1069_Article_IEq36.gif

Fig. 7

Fig. 3

Fig. 4

Fig. 4

Fig. 2

Fig. 3

40708_2023_185_Article_IEq2.gif

Fig. 2

Fig. 6

Fig. 7

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  文献评价指标  
  下载次数:10次 浏览次数:0次