Journal of High Energy Physics | |
Analytic bootstrap of mixed correlators in the O(n) CFT | |
Regular Article - Theoretical Physics | |
Brian McPeak1  Francesco Bertucci1  Johan Henriksson1  | |
[1] Università di Pisa and INFN, sezione di Pisa, Pisa, Italy; | |
关键词: Scale and Conformal Symmetries; Conformal and W Symmetry; Global Symmetries; | |
DOI : 10.1007/JHEP10(2022)104 | |
received in 2022-08-15, accepted in 2022-10-02, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
We use large spin perturbation theory and the Lorentzian inversion formula to compute order-ϵ corrections to mixed correlators in the O(n) Wilson-Fisher CFT in 4 − ϵ dimensions. In particular, we find the scaling dimensions and averaged OPE coefficients appearing in all correlators involving the operators φ and φ2, for φ2 in both the singlet and symmetric traceless representations of O(n). We extend some computations to the next order, and find order-ϵ2 data for a number of quantities for the Ising case at n = 1. Along the way, we discuss several interesting technical aspects which arise, including subleading corrections to mixed conformal blocks, projections onto higher twists in the inversion formula, and multiplet recombination.
【 授权许可】
Unknown
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305117366796ZK.pdf | 1143KB | download | |
40798_2022_490_Article_IEq44.gif | 1KB | Image | download |
40798_2022_490_Article_IEq45.gif | 1KB | Image | download |
【 图 表 】
40798_2022_490_Article_IEq45.gif
40798_2022_490_Article_IEq44.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]
- [106]
- [107]
- [108]
- [109]
- [110]
- [111]
- [112]
- [113]
- [114]
- [115]
- [116]
- [117]
- [118]
- [119]
- [120]