EURASIP Journal on Wireless Communications and Networking | |
RETRACTED ARTICLE: Parameter estimation of network signal normal distribution applied to carbonization depth in wireless networks | |
Research | |
Jun Yang1  Min Cai2  | |
[1] Jewelry and Art Design Institute, Beijing Economic and Management Vocational College, 100102, Beijing, People’s Republic of China;School of Mathematical and Physical Science, Xuzhou Institute of Technology, 221008, Xuzhou, People’s Republic of China; | |
关键词: Carbonation depth; Gaussian distribution; Maximum likelihood estimation; Wireless networks; Machine learning; Network signal; | |
DOI : 10.1186/s13638-020-01694-5 | |
received in 2019-11-22, accepted in 2020-04-04, 发布年份 2020 | |
来源: Springer | |
【 摘 要 】
For the average state of the normal distribution parameter estimation, regular normal distribution parameter gives an estimation, but the carbonation depth of influence factors is more of a parameter estimation, shooting low deficiencies; therefore, putting forward application in the carbonation depth of the normal distribution parameter is estimated. A normal distribution parameter estimation model is constructed, and a normal distribution parameter estimation model framework is constructed by using the least squares method to determine the expression of normal distribution parameters. Based on the linear deviation calculation of normal distribution parameters and the determination of the maximum similar value of parameters, the parameter estimation is realized by using the Bayesian function of carbonization depth. The parameter estimation of network signal based on carbonization depth is proposed. Parameter estimation can play an important role in the intelligent analysis of big data, and it is also an important basic guarantee for machine learning algorithms. Using the integrity test results and error rate test result, variable parameters calculated from measured parameters, substitution shooting parameters calculation formula of parameter estimation is put forward by the conventional parameter estimation methods, which shot up to 22.12%, is suitable for the carbonation depth of the normal distribution parameter estimation.
【 授权许可】
CC BY
© The Author(s). 2020
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305115406430ZK.pdf | 1038KB | download | |
41116_2022_35_Article_IEq487.gif | 1KB | Image | download |
41116_2022_35_Article_IEq489.gif | 1KB | Image | download |
Fig. 25 | 1500KB | Image | download |
41116_2022_35_Article_IEq492.gif | 1KB | Image | download |
41116_2022_35_Article_IEq494.gif | 1KB | Image | download |
41116_2022_35_Article_IEq496.gif | 1KB | Image | download |
41116_2022_35_Article_IEq498.gif | 1KB | Image | download |
41116_2022_35_Article_IEq500.gif | 1KB | Image | download |
41116_2022_35_Article_IEq501.gif | 1KB | Image | download |
Fig. 26 | 129KB | Image | download |
41116_2022_35_Article_IEq503.gif | 1KB | Image | download |
41116_2022_35_Article_IEq504.gif | 1KB | Image | download |
Fig. 27 | 153KB | Image | download |
41116_2022_35_Article_IEq506.gif | 1KB | Image | download |
41116_2022_35_Article_IEq507.gif | 1KB | Image | download |
Fig. 28 | 119KB | Image | download |
41116_2022_35_Article_IEq510.gif | 1KB | Image | download |
Fig. 29 | 127KB | Image | download |
41116_2022_35_Article_IEq512.gif | 1KB | Image | download |
Fig. 30 | 601KB | Image | download |
41116_2022_35_Article_IEq514.gif | 1KB | Image | download |
41116_2022_35_Article_IEq515.gif | 1KB | Image | download |
41116_2022_35_Article_IEq516.gif | 1KB | Image | download |
41116_2022_35_Article_IEq517.gif | 1KB | Image | download |
41116_2022_35_Article_IEq518.gif | 1KB | Image | download |
Fig. 31 | 468KB | Image | download |
41116_2022_35_Article_IEq520.gif | 1KB | Image | download |
Fig. 1 | 125KB | Image | download |
41116_2022_35_Article_IEq522.gif | 1KB | Image | download |
Fig. 1 | 214KB | Image | download |
41116_2022_35_Article_IEq524.gif | 1KB | Image | download |
41116_2022_35_Article_IEq525.gif | 1KB | Image | download |
Fig. 2 | 90KB | Image | download |
Fig. 33 | 734KB | Image | download |
41116_2022_35_Article_IEq528.gif | 1KB | Image | download |
41116_2022_35_Article_IEq529.gif | 1KB | Image | download |
41116_2022_35_Article_IEq530.gif | 1KB | Image | download |
MediaObjects/12888_2023_4518_MOESM1_ESM.docx | 56KB | Other | download |
41116_2022_35_Article_IEq532.gif | 1KB | Image | download |
41116_2022_35_Article_IEq533.gif | 1KB | Image | download |
【 图 表 】
41116_2022_35_Article_IEq533.gif
41116_2022_35_Article_IEq532.gif
41116_2022_35_Article_IEq530.gif
41116_2022_35_Article_IEq529.gif
41116_2022_35_Article_IEq528.gif
Fig. 33
Fig. 2
41116_2022_35_Article_IEq525.gif
41116_2022_35_Article_IEq524.gif
Fig. 1
41116_2022_35_Article_IEq522.gif
Fig. 1
41116_2022_35_Article_IEq520.gif
Fig. 31
41116_2022_35_Article_IEq518.gif
41116_2022_35_Article_IEq517.gif
41116_2022_35_Article_IEq516.gif
41116_2022_35_Article_IEq515.gif
41116_2022_35_Article_IEq514.gif
Fig. 30
41116_2022_35_Article_IEq512.gif
Fig. 29
41116_2022_35_Article_IEq510.gif
Fig. 28
41116_2022_35_Article_IEq507.gif
41116_2022_35_Article_IEq506.gif
Fig. 27
41116_2022_35_Article_IEq504.gif
41116_2022_35_Article_IEq503.gif
Fig. 26
41116_2022_35_Article_IEq501.gif
41116_2022_35_Article_IEq500.gif
41116_2022_35_Article_IEq498.gif
41116_2022_35_Article_IEq496.gif
41116_2022_35_Article_IEq494.gif
41116_2022_35_Article_IEq492.gif
Fig. 25
41116_2022_35_Article_IEq489.gif
41116_2022_35_Article_IEq487.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]