期刊论文详细信息
EURASIP Journal on Wireless Communications and Networking
RETRACTED ARTICLE: Parameter estimation of network signal normal distribution applied to carbonization depth in wireless networks
Research
Jun Yang1  Min Cai2 
[1] Jewelry and Art Design Institute, Beijing Economic and Management Vocational College, 100102, Beijing, People’s Republic of China;School of Mathematical and Physical Science, Xuzhou Institute of Technology, 221008, Xuzhou, People’s Republic of China;
关键词: Carbonation depth;    Gaussian distribution;    Maximum likelihood estimation;    Wireless networks;    Machine learning;    Network signal;   
DOI  :  10.1186/s13638-020-01694-5
 received in 2019-11-22, accepted in 2020-04-04,  发布年份 2020
来源: Springer
PDF
【 摘 要 】

For the average state of the normal distribution parameter estimation, regular normal distribution parameter gives an estimation, but the carbonation depth of influence factors is more of a parameter estimation, shooting low deficiencies; therefore, putting forward application in the carbonation depth of the normal distribution parameter is estimated. A normal distribution parameter estimation model is constructed, and a normal distribution parameter estimation model framework is constructed by using the least squares method to determine the expression of normal distribution parameters. Based on the linear deviation calculation of normal distribution parameters and the determination of the maximum similar value of parameters, the parameter estimation is realized by using the Bayesian function of carbonization depth. The parameter estimation of network signal based on carbonization depth is proposed. Parameter estimation can play an important role in the intelligent analysis of big data, and it is also an important basic guarantee for machine learning algorithms. Using the integrity test results and error rate test result, variable parameters calculated from measured parameters, substitution shooting parameters calculation formula of parameter estimation is put forward by the conventional parameter estimation methods, which shot up to 22.12%, is suitable for the carbonation depth of the normal distribution parameter estimation.

【 授权许可】

CC BY   
© The Author(s). 2020

【 预 览 】
附件列表
Files Size Format View
RO202305115406430ZK.pdf 1038KB PDF download
41116_2022_35_Article_IEq487.gif 1KB Image download
41116_2022_35_Article_IEq489.gif 1KB Image download
Fig. 25 1500KB Image download
41116_2022_35_Article_IEq492.gif 1KB Image download
41116_2022_35_Article_IEq494.gif 1KB Image download
41116_2022_35_Article_IEq496.gif 1KB Image download
41116_2022_35_Article_IEq498.gif 1KB Image download
41116_2022_35_Article_IEq500.gif 1KB Image download
41116_2022_35_Article_IEq501.gif 1KB Image download
Fig. 26 129KB Image download
41116_2022_35_Article_IEq503.gif 1KB Image download
41116_2022_35_Article_IEq504.gif 1KB Image download
Fig. 27 153KB Image download
41116_2022_35_Article_IEq506.gif 1KB Image download
41116_2022_35_Article_IEq507.gif 1KB Image download
Fig. 28 119KB Image download
41116_2022_35_Article_IEq510.gif 1KB Image download
Fig. 29 127KB Image download
41116_2022_35_Article_IEq512.gif 1KB Image download
Fig. 30 601KB Image download
41116_2022_35_Article_IEq514.gif 1KB Image download
41116_2022_35_Article_IEq515.gif 1KB Image download
41116_2022_35_Article_IEq516.gif 1KB Image download
41116_2022_35_Article_IEq517.gif 1KB Image download
41116_2022_35_Article_IEq518.gif 1KB Image download
Fig. 31 468KB Image download
41116_2022_35_Article_IEq520.gif 1KB Image download
Fig. 1 125KB Image download
41116_2022_35_Article_IEq522.gif 1KB Image download
Fig. 1 214KB Image download
41116_2022_35_Article_IEq524.gif 1KB Image download
41116_2022_35_Article_IEq525.gif 1KB Image download
Fig. 2 90KB Image download
Fig. 33 734KB Image download
41116_2022_35_Article_IEq528.gif 1KB Image download
41116_2022_35_Article_IEq529.gif 1KB Image download
41116_2022_35_Article_IEq530.gif 1KB Image download
MediaObjects/12888_2023_4518_MOESM1_ESM.docx 56KB Other download
41116_2022_35_Article_IEq532.gif 1KB Image download
41116_2022_35_Article_IEq533.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq533.gif

41116_2022_35_Article_IEq532.gif

41116_2022_35_Article_IEq530.gif

41116_2022_35_Article_IEq529.gif

41116_2022_35_Article_IEq528.gif

Fig. 33

Fig. 2

41116_2022_35_Article_IEq525.gif

41116_2022_35_Article_IEq524.gif

Fig. 1

41116_2022_35_Article_IEq522.gif

Fig. 1

41116_2022_35_Article_IEq520.gif

Fig. 31

41116_2022_35_Article_IEq518.gif

41116_2022_35_Article_IEq517.gif

41116_2022_35_Article_IEq516.gif

41116_2022_35_Article_IEq515.gif

41116_2022_35_Article_IEq514.gif

Fig. 30

41116_2022_35_Article_IEq512.gif

Fig. 29

41116_2022_35_Article_IEq510.gif

Fig. 28

41116_2022_35_Article_IEq507.gif

41116_2022_35_Article_IEq506.gif

Fig. 27

41116_2022_35_Article_IEq504.gif

41116_2022_35_Article_IEq503.gif

Fig. 26

41116_2022_35_Article_IEq501.gif

41116_2022_35_Article_IEq500.gif

41116_2022_35_Article_IEq498.gif

41116_2022_35_Article_IEq496.gif

41116_2022_35_Article_IEq494.gif

41116_2022_35_Article_IEq492.gif

Fig. 25

41116_2022_35_Article_IEq489.gif

41116_2022_35_Article_IEq487.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  文献评价指标  
  下载次数:15次 浏览次数:8次