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Abstract
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1 Introduction

Conventional Gaussian distribution parameter estimation method uses the basic prop-
erties of normal distribution to the ordinary state of the normal distribution parameter
estimation, but using the conventional approach to estimate the normal distribution
parameter estimation of carbonation depth. Due to the factors affecting carbonization
depth parameter estimation more, shooting low deficiencies for this application in the
carbonation depth of the normal distribution parameter is estimated [1, 2]. Building
the normal distribution parameter estimation model, using the least squares method,
structures, the normal distribution parameter estimation model framework, and the
conditions of using nonparametric test method of Monte Carlo avoids the plug-in
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unknown parameters, the expression of normal distribution parameters. At the same
time, the parameters of the network signal are estimated by the experimental analysis,
and the parameters of the network signal are calculated by the characteristics of its nor-
mal distribution. Based on the normal distribution parameter of the linear deviation
calculation and determining the parameters of similar values, using the Bayesian func-
tion of carbonation depth completes the determination of carbonation depth deviation
estimates of the normal distribution. In order to ensure the effectiveness of the design
of the normal distribution parameter estimation method, the type of carbide si

test environment uses two different kinds of normal distribution parameter
method, which is applied to the carbonation depth of the normal distrikfition
eter estimation simulation test. The test results show that the norm Mn par-
ameter estimation method is proposed with high effectiveness.

The rest of this paper is organized as follows: Section 2 discpesesighe construction of

the normal distribution parameter estimation model, follo thé normal distribu-
tion parameter estimation of carbonization depth in Se 3. The example analysis is
discussed in Section 4. Section 5 concludes the paper ummary and future re-

search directions.

2 The proposed algorithm

2.1 The framework of normal distrib eter estimation model is established
Setting up the normal distributi aramyter estimation model framework was origin-
ally done in 1733, by a Ger at atician and astronomer, Abraham, dermot foer
(Abraham DE Moivre), whigh wa) proposed for the first time. Laplace (Marquis DE

Laplace) and Gaussian edrich Gauss), on the normal distribution, have also

made a contributi € research. First of all, the Gaussian distribution is applied to

norma tion, which is widely used in the parameter estimation of carbonation
d gh the efforts of scholars’ research, the least squares method was finally
dev . It is applied to the theory of probability and mathematical statistics; besides,

the normal distribution is widely used in practice.
Assuming that the random variable x is normally distributed, the probability density
function is

2
S(x) =2 exp{-I58}, —eo < x < o0, (1)

in which, g is called the mean value parameter, o is called the variance parameter,

and -oo <y < o0, 0> 0 is satisfied, which is written as x~N(y, 02). The probability density
function graph of its normal distribution is shown in Fig. 1.The normal distribution
function is [4]
x  @w

F(x) == [* et dt (2)

As can be seen from the graph of probability density function of normal distribution
in Fig. 1, the flx) curve is a bell curve that is symmetric about x = 4. The characteristic
is two, whose ends are low, middle is high, and both sides are symmetrical. When x

equals to x, flx) can get maximum 1/v/2710 when % closes to * oo, fix) closes to 0. The
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Fig. 1 Probability density function graph of normal distribution
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2.2 Determifie expression of normal distribution parameters

Based construction of the normal distribution parameter estimation model

fra o alysis framework of asymptotic distribution depends on the unknown
theta. When the sample size is small, the critical value which is determined

by th¢’limit distribution of inspection efficiency is lower. Studies have shown that the
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Fig. 4 A normal distribution graph of interest; 0=0
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available conditions of nonparametric test method of Monte Carlo is used to avoid
plug-in to estimate unknown parameters and improve the inspection under the small
sample of efficacy. The related work can refer to Zhu & Neuhaus (2000), He & Zhu
(2003), Zhu (2003), Ze & Ng (2003), Zhu (2005), etc [6, 7]. y; = Vo' >/ (y,~x:B,) (i = 1,
2,...,n). According to Verbeke & Lesaffre (1996), there are equations 5, 6, and 7.

oLi(6o) 12, .
) — vt ®
oLi(6) 1 -1/2 4
(;02 zt’"Vlo +3 J/L 0 /J’i
aL,(HO) 1 1 oD 1 ! 1/2 1/2 * V
=t Vda T2 ) + oy Vil E
a8, 2\ ViFigs E) Ty aa /Y

Therefore, &

o (OLi(6o) OLi(6y) OLi(6p)  9Li(6o)
Qi(yiﬂao) - < aﬁr ) 02 ) 861 3y 96 (8)
It means uy; = u(6y) = Wi Y/ 2Doz V_l/ 2 |yt = yF). From formula 3, formula 5,

and formula 8, we can get

Gnu(t) = lzn:[ cos(t'um( 9 sin (& Oi(y7)>— exP{‘@}

i=1

Under th, malJiypothesis, it is easy to get a normal distribution that y; follows
6. nothal distribution. Therefore, we use the following conditional Monte

Carlo. mcfod”to express the state distribution parameter estimation model. The ex-
as follows [8, 9]:
Firsiof all, we produce a sample set of ¥y, = (o1, Y02, ---» Yon)- In this formula, yo1, Y0,

...» Yor are mutually independent, which obeys to N(0, I;1), ..., N(0, I;;,,). In other words,
there is the same distribution of yo1, ¥02, ..., Yo, and 7,55, ..., ¥.
Then, the simulation value of G,,(f) was calculated, and the simulation value of G,,(f) was

Gu(You,t) —%Z cos(t ”01(3’0,)) + sm(t MOI(y()l)) exp{—@}

(i) ) o] 1)

#r (6807 i) 3 (nd)

The corresponding test statistic of G,,(t) is T, 7(yy,) = 1 .G (Yo, £)¢r(t)dt. The re-
sult of T,,, r(Yoy,) is T, r(y&)), voey T, r(y(():")).
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In the end, thel-a sample fraction was calculated as the magnitude of 7, r. In
addition, we can calculate the estimated value of P, which is shown in equation 9.

Py =k/(m+1) ©)

Including k = #{T,,, (Y))2T9,.j = 0,1, ... mi;T%) = Ty,

The expression signal curve of normal distribution parameters is shown in Fig. 5.

Based on the framework of the normal distribution parameter estimation m the
expression of normal distribution parameter is determined, and the construcifon/of
normal distribution parameter estimation model is realized.

3 The normal distribution parameter estimation of carbonita pth is
realized

3.1 Determine the linear deviation of normal distribution parame

In the normal distribution parameter estimation of ca tion”depth, the factors in-
fluencing the hit ratio of parameter estimation mainly i e the linear deviation of
normal distribution parameter and the maximum ty value of parameters. The

linear deviation of the normal distribution_gsgrame is to determine the deviation

. To determine the linear deviation of
6 be the total sample from the flx| 0,
le/of its probability density function, assume

function and estimate the distance of the
normal distribution parameters, setx;£x;..
65, ..., 0). In order to be the overaii®sa
the existence of the overall k-qifle igin moment. Namely, for the whole j (0 <j<k),
pi is existent. Assuming thal 0y, 6,, 7., 6, can be expressed asys, o, ..., i 6; = 6,(us,

U2, ..., i) can be given as sh equation 10 [10].

ok, (10)

x]. Fur-

M=

In the ti 1 @2, ..., 4 is the first k sample origin moments a; = %
J

the re, e want to estimate the function of 6, 0,, ..., 6y, 1 =g(61, 05, ..., Ox) will

1

t estimate as shown in equation 11.
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f1=g<91,92,m,ék) (11)

When k equals to 1, we can usually use the sample mean to estimate the unknown
parameters. If k equals to 2, we can estimate unknown parameters from the first and
second order origin moments [11, 12].

X1, X2,..., %, are assumed to be the random samples from x~N(y, ¢”), which is defined
as 0, =p, 6, = 0. Therefore, it comes that

1 n
611:X7ﬂ2:—§ xl2
ni=

So we should solve for that ‘ V:

)
_ 1 <&
X=p—> ai=u+0 (13)
i=1

Solve for i and ¢ then get an estimate:

N < . 1 & -
iy =X, 67, = — (x,-—X)2 v (14)
i=1

X==) x,8=—)Y (x-X (15)

i=1 i=1

This moment, E(X) =
The linear deviati

Among them, X and s* a@ally independent, X ~ N(u,02/n), <";—12>52 ~ x*(n-1).

oy 23

fulfction of normal distribution parameters can be obtained as

(16)

(x-X)" = ¢ (17)

3.2 Determine the maximum similarity value of normal distribution parameters

Assume f(x, 0) to be the probability density function of the population, including 6 € ®.
As a parameter vector consisting of one or more unknown parameters, @ is parameter
space. If x1,%,,...%, are the samples from the totality, L(6; xy, %, ..., %,,) is taken as the
joint probability density function of the sample, which is recorded as L(6), so equation
18 is as follows:

L(0) = (6;%1, %2, ... 2n) = f (%1, 0)f (%2, 6)...f (%, 6) (18)

In this equation, L(6) is named as sample likelihood function. If some statistic 6= é(

X1,%2,...,%,) meets the following condition L(8) = max L(6) (1.11), € is called the

Maximum Likelihood Estimation of 8, which is abbreviated as MLE [13, 14].
Assuming x1, xy, ..., x,, are samples from x~N(y, ¢?), which is the normal population,
the joint probability density function is

Page 7 of 15



Cai and Yang EURASIP Journal on Wireless Communications and Networking (2020) 2020:86

n e [ e
16) = [Tl ®) = () expd =y (19)

i=1 2m

2

The logarithmic likelihood function is

InL(8) = g In (27702) - % (xi—ﬂ)z (20)
=1

Take the derivative of the above two parameters,

w:;z(%—ﬂf x( \), 21)

oInL(O) -n 1 2
730'2 = sz + 27‘4; (Xz—/fi) =0 (22)

The maximum similarity of normal distribution ametedy;
1 —
Pymie = . zl:xi =X (23)
i=
9 1< — n-1 4
s = 35 0) =1L @; o

3.3 The Bayesian function of @lzation depth was established to estimate the
parameters

According to the
ledge about th
mal distrib

the’sample information, and three kinds of information to carry on
| int¢fence, which rely on the normal distribution parameter of the linear
ormal distribution parameter of the enormous similarity values, and the

tion to describe the unknown situation of 8 is called prior distribution [15, 16]. The im-
plementation form and process of the Bayesian formula are as follows:

At first, flx; 0) is assumed to stand for the population that depends on the density
function of the parameter. As 6 in the parametric space ® is random variable, flx;
O)represents conditions of density of X when 0 is determined. flx; 6) is written as flx| )
in Bayes’ theorem, which represents conditional probability density function when the
random variable 6 gives a specific value to totality X.

Then, the prior distribution 72(6) is selected according to the prior information of pa-
rameters 6.

Next, from Bayes’ point of view, the sample x = (xy, %o, ..., x,) is produced by two
steps.

First, a sample ' is generated from the prior distribution 7(6) determined in step 2.
Then x = (x1, %y, ...,%,) is generated from flx; 8). At this point, the joint conditional
probability function of the sample tree can be obtained:

Page 8 of 15
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n

F8) = f 1,2, sal6) = [ 516 (25)

i=1
In Eq. (25), the sample information and the overall information are integrated, so it is
called the likelihood function. Because ' of the third step is an unknown hypothesis,
which is based on the selected prior distribution, all possibilities of ' should be consid-

ered and the joint distribution of samples x and parameters 8 should be obtained.

h(x,0) = f(x|0)7(6) (26)
Finally, the above expression combines the three available information. Fhe statiytical
inference 0 on the unknown parameters needs to be calculated. Whe i sam-

ple information, we can only judge the parameters according to the(prior plistribution.
After getting the sample observation value of x = (xq, %, ..., %, can be de-
duced according to k(x, 0). h(x, 0) is decomposed:

h(x,0) = m(0)x)m(x) (27)
m(x) is marginal density function: v
m(x) = / h(x,0)d6 = / f(x|0)7z(8)d) (28)
©
There is not any information abo equatlon 71(6] x) makes inference to 6.

In this point, the equation of 71(9

h(x,0)

n(0)x) = m(x) f@f-‘ ' = cf (x|0) (29)

In this equation, ¢ has g to do with 6. Equation 29 is the form of the probabil-

ity density functj f thjy Bayesian formula. Set in the sample x, parameter 6 of the

conditional is called the posterior distribution. It focuses on the overall,
sample, a e related parameters of a priori information, and it has ruled out all
infor has nothing to do with the parameters of the result. Therefore,

ba
be ed and be more effective [17].

posterior distribution 6 of parameters,z(x| 6) of statistical inference can

Assuming 05 to be the Bayesian of 6 estimation, comprehensive information is about
various posterior distribution. The information is extracted from (| x) to get the re-

sults of O5. When the loss function is square loss, a commonly used standard of Bayes-
ian estimation is to minimize it with the correct posterior mean square error criterion
MSE.

MES(05|x) = E?*(05-0)' (95-6)

_ / . (93—6>2n(0|x)d6
= 0,20, / m(6x)d0 + / @92ﬂ(0|x)d6

E?1* stands for the minimum value of the expectations with posterior distribution. It

can be seen that the type is a quadratic trinomial of 0p; and binomial coefficient is posi-

tive. Therefore, there will be a minimum, and the minimum value is as follows.
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b5 — / O(6lx)d6 — E°*(0x) (30)
€]

Through the type, it can be seen on the mean square error criterion that the Bayesian
estimation of parameter theta 0 is the posterior mean, theta, and posterior mean error
minimum. For the normal distribution parameter of the Bayesian estimation problem,
according to the principle of Bayesian estimation, the estimation is for the posterior
distribution function of expectations. In this paper, the posterior distribution calcula-
tion is simplified used fully in statistics for the computation of the posterior distribu-
tion [18]:

iy = D67 )do \)
{gg _ fjﬁzn(emde (31)

Through double integral, it is difficult to directly calculate aygsian estimation of
the explicit solution of theta. At the same time, MCMC nfiet is ‘conducted in nu-
merical simulation under different prior [19].

Using Devroye’s thoughts obey the nuclear formula of ibution of the parameters 6
and conditions of sample ¢, combining German al s to calculate and determine
the carbonation depth of the Bayesian functiopgAlgori process is as follows [20]:

(2) Produce obedience y;, 1 frop€r; (u );

1) Few parameters given initial values ¢ »e remembered o2, and will be the
p g Hos 0g

first step j and, respectively, for y; an

(3) Produce 0? 1 obedience | 4, ¥); and
(4) Repeat step 2 and step AN tiznes

N
estimates (4, 0”) through 21— > {(4,0%), including

Jj=mp+1

by calculating the Ba

those for debu

calculation,@viich issimilar to the parameters of great value to determine, the applica-

d on the normal distribution parameter of the linear deviation

tion in tie.carbofation depth of the Bayesian parameter estimation function is imple-

mented

4E iment test and result analysis

In order to guarantee the normal distribution in this paper, the determination of car-
bonation depth deviation estimates the validity of the simulation experiments analysis
[22]. During the trial, there is a different type of carbide as the test object, and the nor-
mal distribution parameter estimation of carbonation depth is simulated in the test. On
the depth of different types of carbide, as well as the environment and carries in the
simulation guarantees the validity of the test. The use of conventional Gaussian distri-
bution parameter estimation method for comparison object compare the simulation re-
sults. The test data is presented in the same data in the chart, through calculation of
the percentage of normal distribution parameter test conclusion [23].

4.1 Data preparation

In this paper, in order to ensure the accuracy of the simulation test, simulation process
is used to provide different types of carbide as test objects. Using two different normal
distribution parameter estimation methods is the normal distribution parameter

Page 10 of 15
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estimation of carbonation depth simulation experiment. The simulation experiment re-
sults are analyzed due to the different methods of analysis results, and the analysis
methods are different. Therefore, test process is to guarantee the environmental param-
eters. In this paper, the results of the test data set are shown in Table 1.

Put two methods of normal distribution in the above-mentioned operation environ-
ment. Loading simulation data type carbide and imitating the loading type carbide
simulation parameters are as follows (Table 2):

4.2 Test process design
In order to verify the hit ratio of normal distribution parameters of tw, T%zlormal
distribution parameter estimation methods, the integrity test of no @bution esti-
mation results was carried out. The error rate test of the results e normal distribu-
tion estimation results were carried out, and the two test resudts Were récorded. The error
rate of the normal distribution parameters was calculated rding’to the probability for-
mula of the normal distribution parameters, and the compaiisoir was made.

First of all, the prepared data were inputted in mputer simulation system,
and the computer simulation system was set up in §ccordance with the requirements
in Table 1 to perform correlation operatio

Then, in the same time period, undey’the test environment and the same influ-

ence parameters, the integrity test ngrmal distribution estimation results is car-

ried out. Otherwise, the error r st of the normal distribution estimation results is
conducted.

Finally, the third party anajysis ahd recording software is used to analyze the relevant

data generated by the er simulation equipment. Meanwhile, simulation of la-

boratory personn ion and simulation of computer equipment factors of uncer-

tainty are eli he simulation test of normal distribution parameters of

carbonizati pthJwas carried out for different types of carbonization and different
normal ibutiyh parameter estimation methods. The results are shown in the com-
parison lt/turve of this test and weighted analysis is carried out. The experimental
r obtained by using the normal distribution parameter hit ratio calculation
form

Table 1 Simulation test parameter

Project Executed range/parameters Note

Simulation of test equipment VCM simulation platform, vcm- The two sets of configurations

parameters 2124r are identical

Simulation of test equipment platform  Windows Windows7 64-bit flagship

Simulation of device central processing AMD Ryzen 7 2700X CPU main frequency: 3.7ghz

unit Maximum frequency: 4.3GHz

Analog video card NVIDIA Rainbow iGame GTX 1080Ti  Core frequency: 1480/1733 mhz
Vulcan X OC Display frequency: 11,000 MHz

Video memory capacity: 11 GB
Display memory bit width: 352
bit
Simulation of software parameter Normal distribution method The two sets of configurations
estimation method are identical
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Table 2 Carbon-type simulation parameters

Type of carbide Carbonization depth range Test accuracy review analysis point location
Conventional carbonization 0~15mm 75mm

Composite carbonization 10~25mm 125 mm

Load the carbonization method 15~35mm 175 mm

Gradual carbonization method 25~45mm 27.5mm

Conventional carbonization 35~55mm 40.5 mm

Composite carbonization 45~65mm 555 mm

Load the carbonization method 55~75mm 65.5mm

Gradual carbonization method 65~85mm 755mm

Conventional carbonization 75~105mm 95.0 mm V
Composite carbonization 95~145mm 1250 mm

Load the carbonization method 125~205 mm 185.0 mm x

Gradual carbonization method 185~305mm 2550m

Gradual carbonization method 285~400 mm

4.3 Test analysis of normal distribution esti esults
i pes and different normal distribution
parameter estimation methods we tg’ carry out the integral test analysis of nor-
mal distribution estimation resufts.\{he comparison curve of the overall test results of
the normal distribution estinfation results is shown in Fig. 6.

According to the compa esult curve of the whole test of the normal dis-

tribution estimation r

y using the third party analysis and recording soft-

ware, the wei lysis shows that the overall result of the normal

distribution er estimation method designed in this paper is 78.42%. The
result of aditional normal distribution parameter estimation method is
37.68%

0288

0240 X
=

0.192

0.144

Fig. 6 The curve of comparison results of the whole test with normal distribution estimation results
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4.4 Error rate test analysis of normal distribution estimation results

At the same time, the error rate test of normal distribution estimation results was con-
ducted for different carbonization types and different normal distribution parameter es-
timation methods. The error rate test results comparison curve of the normal
distribution estimation results is shown in Fig. 7.

According to the results of normal distribution estimation error rate comparison test
curve, using the weighted analysis by the third-party analysis and recording software
makes the error rate of the normal distribution parameter estimation method ned
in this paper at 9.8%, while the traditional normal error rate in the distribution@arasi-

eter estimation method is 23.7%. V

4.5 Normal distribution parameter hit ratio calculation

The error rate of normal distribution estimation results and ngfmial {istribution estima-
tion results were substituted into the normal distribution patamdyer, hit ratio calculation
formula. Its normal distribution parameter hit ratio calc formula is as follows:

X= %é(ci—KQ,-), (32)

in which C represents the integrity test results of the Gaussian distribution estima-

tion. Q represents the normal distributio ajion result error rate. K represents the

simulation coefficient of the test and”is, takgy¢ 0.98 in the paper. n represents trial
stretch and is taken 400.

The method that is put fo nanied y; and the normal method is called y,. If
Ax = x1- x> is a positive nughber, it répresents a decrease in risk management. If Ay =

X1 - X2is a negative, it repres e risk reduction. Ay can be taken in equation 32.

> (Cu-KQy)

n i=1

T T |./ F‘ |./ l’ r
-200 -150 -100 -0 0 50 100 150 200

Fig. 7 Error rate test comparison curve of normal distribution estimation results




Cai and Yang EURASIP Journal on Wireless Communications and Networking (2020) 2020:86 Page 14 of 15

Compared with the conventional parameter estimation method, the proposed param-
eter estimation method increases the hit ratio by 22.12%, which is suitable for the nor-
mal distribution parameter estimation of carbonization depth.

5 Conclusion
Normal distribution is proposed in this paper to determine carbonation depth deviation
estimation. Based on the construction of the normal distribution parameter estimation

model and the normal distribution parameter of the linear deviation calculatio e re-
sult is determined with the maximum similarity value of the parameter. T rijal
distribution parameter estimation of carbonization depth is realized by u the,Bayes-

ian function of carbonization depth. The experimental data show oposed
method is highly effective. It is hoped that this study can provi
the normal distribution parameter estimation method of carbo epth.

Abbreviation
DE: Decision element
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