期刊论文详细信息
Financial Innovation
Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach
Research
Benjamin Yeo1  Li-Chen Cheng2  Wei-Ting Lu2 
[1] Albers School of Business and Economics, Seattle University, 901 12th Ave, 98122, Seattle, WA, USA;Department of Information and Finance Management, National Taipei University of Technology, 100, Taipei, Taiwan;
关键词: Fake news;    Rumors;    Data mining;    Social media;    Classification;    Machine learning;    GameStop;    Reddit;   
DOI  :  10.1186/s40854-022-00423-9
 received in 2022-01-26, accepted in 2022-11-16,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

In 2021, the abnormal short-term price fluctuations of GameStop, which were triggered by internet stock discussions, drew the attention of academics, financial analysts, and stock trading commissions alike, prompting calls to address such events and maintain market stability. However, the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals. Furthermore, data mining methods are less often used to predict stock trading despite their higher accuracy. This study adopts an innovative approach using social media data to obtain stock rumors, and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior. Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior. The study serves as an impetus for further research using data mining as a method of inquiry.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305113727207ZK.pdf 1377KB PDF download
41116_2022_35_Article_IEq244.gif 1KB Image download
MediaObjects/12888_2023_4553_MOESM2_ESM.xls 513KB Other download
41116_2022_35_Article_IEq249.gif 1KB Image download
41116_2022_35_Article_IEq251.gif 1KB Image download
41116_2022_35_Article_IEq253.gif 1KB Image download
41116_2022_35_Article_IEq255.gif 1KB Image download
41116_2022_35_Article_IEq257.gif 1KB Image download
41116_2022_35_Article_IEq259.gif 1KB Image download
Fig. 1 171KB Image download
Fig. 4 78KB Image download
41116_2022_35_Article_IEq262.gif 1KB Image download
41116_2022_35_Article_IEq264.gif 1KB Image download
41116_2022_35_Article_IEq265.gif 1KB Image download
41116_2022_35_Article_IEq267.gif 1KB Image download
41116_2022_35_Article_IEq269.gif 1KB Image download
41116_2022_35_Article_IEq270.gif 1KB Image download
41116_2022_35_Article_IEq272.gif 1KB Image download
41116_2022_35_Article_IEq273.gif 1KB Image download
41116_2022_35_Article_IEq274.gif 1KB Image download
41116_2022_35_Article_IEq275.gif 1KB Image download
41116_2022_35_Article_IEq276.gif 1KB Image download
41116_2022_35_Article_IEq277.gif 1KB Image download
41116_2022_35_Article_IEq278.gif 1KB Image download
41116_2022_35_Article_IEq280.gif 1KB Image download
41116_2022_35_Article_IEq281.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq281.gif

41116_2022_35_Article_IEq280.gif

41116_2022_35_Article_IEq278.gif

41116_2022_35_Article_IEq277.gif

41116_2022_35_Article_IEq276.gif

41116_2022_35_Article_IEq275.gif

41116_2022_35_Article_IEq274.gif

41116_2022_35_Article_IEq273.gif

41116_2022_35_Article_IEq272.gif

41116_2022_35_Article_IEq270.gif

41116_2022_35_Article_IEq269.gif

41116_2022_35_Article_IEq267.gif

41116_2022_35_Article_IEq265.gif

41116_2022_35_Article_IEq264.gif

41116_2022_35_Article_IEq262.gif

Fig. 4

Fig. 1

41116_2022_35_Article_IEq259.gif

41116_2022_35_Article_IEq257.gif

41116_2022_35_Article_IEq255.gif

41116_2022_35_Article_IEq253.gif

41116_2022_35_Article_IEq251.gif

41116_2022_35_Article_IEq249.gif

41116_2022_35_Article_IEq244.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  文献评价指标  
  下载次数:17次 浏览次数:4次