| Financial Innovation | |
| Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach | |
| Research | |
| Benjamin Yeo1  Li-Chen Cheng2  Wei-Ting Lu2  | |
| [1] Albers School of Business and Economics, Seattle University, 901 12th Ave, 98122, Seattle, WA, USA;Department of Information and Finance Management, National Taipei University of Technology, 100, Taipei, Taiwan; | |
| 关键词: Fake news; Rumors; Data mining; Social media; Classification; Machine learning; GameStop; Reddit; | |
| DOI : 10.1186/s40854-022-00423-9 | |
| received in 2022-01-26, accepted in 2022-11-16, 发布年份 2022 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
In 2021, the abnormal short-term price fluctuations of GameStop, which were triggered by internet stock discussions, drew the attention of academics, financial analysts, and stock trading commissions alike, prompting calls to address such events and maintain market stability. However, the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals. Furthermore, data mining methods are less often used to predict stock trading despite their higher accuracy. This study adopts an innovative approach using social media data to obtain stock rumors, and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior. Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior. The study serves as an impetus for further research using data mining as a method of inquiry.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305113727207ZK.pdf | 1377KB | ||
| 41116_2022_35_Article_IEq244.gif | 1KB | Image | |
| MediaObjects/12888_2023_4553_MOESM2_ESM.xls | 513KB | Other | |
| 41116_2022_35_Article_IEq249.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq251.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq253.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq255.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq257.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq259.gif | 1KB | Image | |
| Fig. 1 | 171KB | Image | |
| Fig. 4 | 78KB | Image | |
| 41116_2022_35_Article_IEq262.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq264.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq265.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq267.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq269.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq270.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq272.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq273.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq274.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq275.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq276.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq277.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq278.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq280.gif | 1KB | Image | |
| 41116_2022_35_Article_IEq281.gif | 1KB | Image |
【 图 表 】
41116_2022_35_Article_IEq281.gif
41116_2022_35_Article_IEq280.gif
41116_2022_35_Article_IEq278.gif
41116_2022_35_Article_IEq277.gif
41116_2022_35_Article_IEq276.gif
41116_2022_35_Article_IEq275.gif
41116_2022_35_Article_IEq274.gif
41116_2022_35_Article_IEq273.gif
41116_2022_35_Article_IEq272.gif
41116_2022_35_Article_IEq270.gif
41116_2022_35_Article_IEq269.gif
41116_2022_35_Article_IEq267.gif
41116_2022_35_Article_IEq265.gif
41116_2022_35_Article_IEq264.gif
41116_2022_35_Article_IEq262.gif
Fig. 4
Fig. 1
41116_2022_35_Article_IEq259.gif
41116_2022_35_Article_IEq257.gif
41116_2022_35_Article_IEq255.gif
41116_2022_35_Article_IEq253.gif
41116_2022_35_Article_IEq251.gif
41116_2022_35_Article_IEq249.gif
41116_2022_35_Article_IEq244.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
PDF