期刊论文详细信息
Earth, Planets and Space
Characterized source model of the M7.3 2016 Kumamoto earthquake by the 3D reciprocity GFs inversion with special reference to the velocity pulse at KMMH16
Full Paper
Eri Ito1  Hiroshi Kawase1  Fumiaki Nagashima1  Anatoly Petukhin2 
[1] Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, 611-0011, Kyoto, Japan;Geo-Research Institute, Otemae 2-1-2, Chuo-ku, 540-0008, Osaka, Japan;
关键词: 2016 Kumamoto earthquake;    Source inversion;    Reciprocity method;    Strong-motion generation area;    Characterized source model;    Recipe for strong-motion prediction;    Source time function;   
DOI  :  10.1186/s40623-023-01768-w
 received in 2022-06-02, accepted in 2023-01-07,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

The 2016 Kumamoto earthquakes caused severe damage centering on the Mashiki residential area. The velocity waveforms at station KMMH16 in Mashiki, during the M7.3 mainshock, show large pulses. We found that severe damage in Mashiki may be the result of the strong westward velocity pulse. The question raised is how the near-fault ground motions with strong velocity pulse at KMMH16 were generated during the mainshock. We focus on the characterized source model with Strong Motion Generation Areas (SMGA). Empirical Green’s function (EGF) method is widely used for source modeling in this case. However, in case that the target site is located just near the fault in nodal plane of source mechanism (like KMMH16), mechanism of the EGF event should perfectly fit mechanism of the mainshock, which is a rare case. Therefore, instead of using EGFs, we used theoretical 3D Green’s functions. Our approach is a nonlinear source inversion. This method requires calculation of waveforms and comparison with observations for many source models. To accelerate these calculations, we use pre-calculated GFs by the reciprocity method in the JIVSM velocity structure model. By comparison with aftershock records, we validated this structure for periods as short as 1.5 s. Target sites are limited to sites close to the fault: KMM005, KMM006, KMMH14, and KMMH16. First, we look for an initial SMGA source model by the grid search method applied to relatively long-period (> 3 s) waveforms and coarse grid of source parameters. Then, we tune that source model to fit observed short-period waveforms with the simplex search method. Necessary physical constraints for the range of the source parameters are applied here. The important point in our inversion scheme is to describe the Kostrov-like slip velocity functions inside each SMGAs by using two triangles. The resulting source model agrees well with other inversion results. We found that the observed westward pulse at KMMH16 is the result of the constructive interference of two pulses from SMGA1 and SMGA2, located in Hinagu fault and southwestern segment of Futagawa fault.Graphical Abstract

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305111109242ZK.pdf 2598KB PDF download
Fig. 1 233KB Image download
40249_2022_1049_Article_IEq21.gif 1KB Image download
41116_2022_35_Article_IEq47.gif 1KB Image download
40249_2022_1049_Article_IEq2.gif 1KB Image download
41116_2022_35_Article_IEq52.gif 1KB Image download
40249_2022_1049_Article_IEq6.gif 1KB Image download
Fig. 4 841KB Image download
MediaObjects/41021_2022_257_MOESM2_ESM.pptx 113KB Other download
41116_2022_35_Article_IEq55.gif 1KB Image download
41116_2022_35_Article_IEq56.gif 1KB Image download
MediaObjects/41408_2023_786_MOESM1_ESM.docx 11KB Other download
Fig. 4 704KB Image download
41116_2022_35_Article_IEq61.gif 1KB Image download
41116_2022_35_Article_IEq62.gif 1KB Image download
41116_2022_35_Article_IEq63.gif 1KB Image download
41116_2022_35_Article_IEq64.gif 1KB Image download
41116_2022_35_Article_IEq65.gif 1KB Image download
Fig. 4 493KB Image download
40854_2022_443_Article_IEq20.gif 1KB Image download
41116_2022_35_Article_IEq66.gif 1KB Image download
Fig. 5 294KB Image download
【 图 表 】

Fig. 5

41116_2022_35_Article_IEq66.gif

40854_2022_443_Article_IEq20.gif

Fig. 4

41116_2022_35_Article_IEq65.gif

41116_2022_35_Article_IEq64.gif

41116_2022_35_Article_IEq63.gif

41116_2022_35_Article_IEq62.gif

41116_2022_35_Article_IEq61.gif

Fig. 4

41116_2022_35_Article_IEq56.gif

41116_2022_35_Article_IEq55.gif

Fig. 4

40249_2022_1049_Article_IEq6.gif

41116_2022_35_Article_IEq52.gif

40249_2022_1049_Article_IEq2.gif

41116_2022_35_Article_IEq47.gif

40249_2022_1049_Article_IEq21.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:1次 浏览次数:1次