期刊论文详细信息
Chinese Journal of Mechanical Engineering
Online Identification of Lithium-ion Battery Model Parameters with Initial Value Uncertainty and Measurement Noise
Original Article
Tianqi Liu1  Yingmin Zhang1  Xinghao Du1  Jichang Peng2  Jinhao Meng3  Shunli Wang4  Kailong Liu5 
[1] College of Electrical Engineering, Sichuan University, 610044, Chengdu, China;Nanjing Institute of Technology, 211103, Nanjing, China;School of Electrical Engineering, Xi’an Jiaotong University, 710049, Xi’an, China;Southwest University of Science and Technology, 621010, Mianyang, China;Warwick Manufacturing Group, University of Warwick, Coventry, UK;
关键词: Li-ion battery;    Equivalent circuit model;    Recursive least squares;    Recursive total least squares;   
DOI  :  10.1186/s10033-023-00846-0
 received in 2021-09-23, accepted in 2023-01-10,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Online parameter identification is essential for the accuracy of the battery equivalent circuit model (ECM). The traditional recursive least squares (RLS) method is easily biased with the noise disturbances from sensors, which degrades the modeling accuracy in practice. Meanwhile, the recursive total least squares (RTLS) method can deal with the noise interferences, but the parameter slowly converges to the reference with initial value uncertainty. To alleviate the above issues, this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM. RLS converges quickly by updating the parameters along the gradient of the cost function. RTLS is applied to attenuate the noise effect once the parameters have converged. Both simulation and experimental results prove that the proposed method has good accuracy, a fast convergence rate, and also robustness against noise corruption.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305110983507ZK.pdf 3210KB PDF download
Fig. 2 49KB Image download
MediaObjects/12944_2022_1767_MOESM1_ESM.tif 309KB Other download
MediaObjects/12888_2022_4438_MOESM6_ESM.pdf 210KB PDF download
MediaObjects/12888_2022_4438_MOESM7_ESM.pdf 96KB PDF download
MediaObjects/12888_2022_4438_MOESM8_ESM.pdf 529KB PDF download
Fig. 3 549KB Image download
Fig. 57 1785KB Image download
Fig. 1 1255KB Image download
Fig. 5 149KB Image download
MediaObjects/42490_2022_63_MOESM1_ESM.zip 9658KB Package download
40798_2022_490_Article_IEq41.gif 1KB Image download
Fig. 1 133KB Image download
40798_2022_490_Article_IEq42.gif 1KB Image download
Fig. 4 2629KB Image download
40798_2022_490_Article_IEq44.gif 1KB Image download
40798_2022_490_Article_IEq45.gif 1KB Image download
40798_2022_490_Article_IEq46.gif 1KB Image download
40798_2022_490_Article_IEq47.gif 1KB Image download
40798_2022_490_Article_IEq48.gif 1KB Image download
Fig. 2 1523KB Image download
Fig. 1 1178KB Image download
40798_2022_490_Article_IEq510.gif 1KB Image download
40798_2022_490_Article_IEq52.gif 1KB Image download
40798_2022_490_Article_IEq53.gif 1KB Image download
40798_2022_490_Article_IEq54.gif 1KB Image download
40798_2022_490_Article_IEq55.gif 1KB Image download
40798_2022_490_Article_IEq56.gif 1KB Image download
Fig. 2 1160KB Image download
Fig. 4 819KB Image download
Fig. 4 1778KB Image download
42004_2022_800_Article_IEq32.gif 1KB Image download
【 图 表 】

42004_2022_800_Article_IEq32.gif

Fig. 4

Fig. 4

Fig. 2

40798_2022_490_Article_IEq56.gif

40798_2022_490_Article_IEq55.gif

40798_2022_490_Article_IEq54.gif

40798_2022_490_Article_IEq53.gif

40798_2022_490_Article_IEq52.gif

40798_2022_490_Article_IEq510.gif

Fig. 1

Fig. 2

40798_2022_490_Article_IEq48.gif

40798_2022_490_Article_IEq47.gif

40798_2022_490_Article_IEq46.gif

40798_2022_490_Article_IEq45.gif

40798_2022_490_Article_IEq44.gif

Fig. 4

40798_2022_490_Article_IEq42.gif

Fig. 1

40798_2022_490_Article_IEq41.gif

Fig. 5

Fig. 1

Fig. 57

Fig. 3

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  文献评价指标  
  下载次数:15次 浏览次数:6次