会议论文详细信息
2nd International Symposium on Resource Exploration and Environmental Science
The fault diagnosis method of photovoltaic module based on probabilistic neural network
生态环境科学
Wu, Yongxin^1 ; Wang, Hu^1 ; Guo, Tingting^2
China Datang Corporation Science and Technology Research Institute, Beijing, China^1
Department of Physics, College of Sciences, Tianjin University of Science and Technology, Tianjin, China^2
关键词: Dust deposition;    Equivalent circuit model;    Fault diagnosis method;    Fault diagnosis model;    Output characteristics;    Partial shading;    Photovoltaic modules;    Probabilistic neural networks;   
Others  :  https://iopscience.iop.org/article/10.1088/1755-1315/170/4/042009/pdf
DOI  :  10.1088/1755-1315/170/4/042009
学科分类:环境科学(综合)
来源: IOP
PDF
【 摘 要 】

This paper describes a fault diagnosis method of photovoltaic (PV) module, which bases on equivalent circuit module and probabilistic neural network (PNN). The output characteristics of the PV module under normal, dust deposition, abnormal aging and partial shading conditions are simulated by using the equivalent circuit model. The simulated data are used as characteristic parameters to fault type diagnosis. The performance of the fault diagnosis model is evaluated, and the results indicate that the method can detect the fault types correctly.

【 预 览 】
附件列表
Files Size Format View
The fault diagnosis method of photovoltaic module based on probabilistic neural network 313KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:35次