期刊论文详细信息
BMC Genomics
GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning
Research
Lin Tang1  Ting Wang2  Xi Deng2  Junzhe Cai2  Lin Liu2 
[1] Key Laboratory of Educational Information for Nationalities Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China;School of Information, Yunnan Normal University, Kunming, Yunnan, China;
关键词: lncRNA;    Subcellular localization;    Graph neural network;    Meta-learning;    Classification;   
DOI  :  10.1186/s12864-022-09034-1
 received in 2022-06-29, accepted in 2022-11-21,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

In recent years, a large number of studies have shown that the subcellular localization of long non-coding RNAs (lncRNAs) can bring crucial information to the recognition of lncRNAs function. Therefore, it is of great significance to establish a computational method to accurately predict the subcellular localization of lncRNA. Previous prediction models are based on low-level sequences information and are troubled by the few samples problem. In this study, we propose a new prediction model, GM-lncLoc, which is based on the initial information extracted from the lncRNA sequence, and also combines the graph structure information to extract high level features of lncRNA. In addition, the training mode of meta-learning is introduced to obtain meta-parameters by training a series of tasks. With the meta-parameters, the final parameters of other similar tasks can be learned quickly, so as to solve the problem of few samples in lncRNA subcellular localization. Compared with the previous methods, GM-lncLoc achieved the best results with an accuracy of 93.4 and 94.2% in the benchmark datasets of 5 and 4 subcellular compartments, respectively. Furthermore, the prediction performance of GM-lncLoc was also better on the independent dataset. It shows the effectiveness and great potential of our proposed method for lncRNA subcellular localization prediction. The datasets and source code are freely available at https://github.com/JunzheCai/GM-lncLoc.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305110726162ZK.pdf 1970KB PDF download
41116_2022_35_Article_IEq274.gif 1KB Image download
Fig. 2 192KB Image download
41116_2022_35_Article_IEq297.gif 1KB Image download
MediaObjects/12888_2023_4558_MOESM1_ESM.docx 41KB Other download
41116_2022_35_Article_IEq317.gif 1KB Image download
41116_2022_35_Article_IEq319.gif 1KB Image download
41116_2022_35_Article_IEq310.gif 1KB Image download
41116_2022_35_Article_IEq323.gif 1KB Image download
Fig. 1 917KB Image download
41116_2022_35_Article_IEq325.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq325.gif

Fig. 1

41116_2022_35_Article_IEq323.gif

41116_2022_35_Article_IEq310.gif

41116_2022_35_Article_IEq319.gif

41116_2022_35_Article_IEq317.gif

41116_2022_35_Article_IEq297.gif

Fig. 2

41116_2022_35_Article_IEq274.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  文献评价指标  
  下载次数:2次 浏览次数:0次