期刊论文详细信息
Journal of Big Data
Autoencoder-kNN meta-model based data characterization approach for an automated selection of AI algorithms
Research
Mohamed Hamlich1  Mourad Bouneffa2  Adeel Ahmad2  Moncef Garouani3 
[1] CCPS Laboratory, ENSAM, University of Hassan II, Casablanca, Morocco;Univ. Littoral Côte d’Opale, UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, 62100e, Calais, France;Univ. Littoral Côte d’Opale, UR 4491, LISIC, Laboratoire d’Informatique Signal et Image de la Cote d’Opale, 62100e, Calais, France;CCPS Laboratory, ENSAM, University of Hassan II, Casablanca, Morocco;Study and Research Center for Engineering and Management (CERIM), HESTIM, Casablanca, Morocco;
关键词: Algorithm selection;    AutoML;    Meta-learning;    Meta-features;    Data representation;    kNN;    Autoencoder;   
DOI  :  10.1186/s40537-023-00687-7
 received in 2021-12-09, accepted in 2023-01-21,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

The recent evolution of machine learning (ML) algorithms and the high level of expertise required to use them have fuelled the demand for non-experts solutions. The selection of an appropriate algorithm and the configuration of its hyperparameters is among the most complicated tasks while applying ML to new problems. It necessitates well awareness and knowledge of ML algorithms. The algorithm selection problem (ASP) is defined as the process of identifying the algorithm (s) that can deliver top performance for a particular problem, task, and evaluation measure. In this context, meta-learning is one of the approaches to achieve this objective by using prior learning experiences to assist the learning process on unseen problems and tasks. As a data-driven approach, appropriate data characterization is of vital importance for the meta-learning. Nonetheless, the recent literature witness a variety of data characterization techniques including simple, statistical and information theory based measures. However, their quality still needs to be improved. In this paper, a new Autoencoder-kNN (AeKNN) based meta-model with built-in latent features extraction is proposed. The approach is aimed to extract new characterizations of the data, with lower dimensionality but more significant and meaningful features. AeKNN internally uses a deep autoencoder as a latent features extractor from a set of existing meta-features induced from the dataset. From this new features vectors the computed distances are more significant, thus providing a way to accurately recommending top-performing pipelines for previously unseen datasets. In an application on a large-scale hyperparameters optimization task for 400 real world datasets with varying schemas as a meta-learning task, we show that AeKNN offers considerable improvements of the classical kNN as well as traditional meta-models in terms of performance.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305151743283ZK.pdf 1713KB PDF download
Fig. 2 112KB Image download
12888_2023_4583_Article_IEq1.gif 1KB Image download
Fig. 5 703KB Image download
Fig. 6 377KB Image download
Fig. 1 895KB Image download
Fig. 7 673KB Image download
Fig. 1 87KB Image download
Fig. 2 4379KB Image download
Fig. 4 452KB Image download
Fig. 9 78KB Image download
Fig. 1 361KB Image download
MediaObjects/41408_2023_799_MOESM2_ESM.xlsx 13KB Other download
Fig. 3 74KB Image download
Fig. 1 1009KB Image download
Fig. 1 3236KB Image download
Fig. 1 39KB Image download
12302_2023_718_Article_IEq56.gif 1KB Image download
12302_2023_718_Article_IEq58.gif 1KB Image download
Fig. 4 810KB Image download
MediaObjects/12960_2023_799_MOESM6_ESM.xlsx 325KB Other download
Fig. 6 270KB Image download
Fig. 2 209KB Image download
Fig. 4 437KB Image download
Fig. 3 3725KB Image download
Fig. 1 511KB Image download
Fig. 2 1441KB Image download
Fig. 1 270KB Image download
MediaObjects/12936_2023_4503_MOESM1_ESM.pdf 369KB PDF download
42004_2023_830_Article_IEq16.gif 1KB Image download
MediaObjects/13068_2023_2267_MOESM4_ESM.docx 46KB Other download
Fig. 3 282KB Image download
Fig. 3 640KB Image download
Fig. 2 164KB Image download
Fig. 4 3876KB Image download
Fig. 2 2654KB Image download
Fig. 3 60KB Image download
13073_2023_1154_Article_IEq1.gif 1KB Image download
376KB Image download
MediaObjects/12888_2023_4616_MOESM1_ESM.docx 12KB Other download
MediaObjects/12936_2023_4455_MOESM5_ESM.docx 17KB Other download
Fig. 3 109KB Image download
MediaObjects/40644_2023_532_MOESM4_ESM.docx 13KB Other download
42004_2023_830_Article_IEq22.gif 1KB Image download
791KB Image download
Fig. 6 194KB Image download
Fig. 2 326KB Image download
Fig. 7 1210KB Image download
Fig. 4 344KB Image download
Fig. 5 92KB Image download
【 图 表 】

Fig. 5

Fig. 4

Fig. 7

Fig. 2

Fig. 6

42004_2023_830_Article_IEq22.gif

Fig. 3

13073_2023_1154_Article_IEq1.gif

Fig. 3

Fig. 2

Fig. 4

Fig. 2

Fig. 3

Fig. 3

42004_2023_830_Article_IEq16.gif

Fig. 1

Fig. 2

Fig. 1

Fig. 3

Fig. 4

Fig. 2

Fig. 6

Fig. 4

12302_2023_718_Article_IEq58.gif

12302_2023_718_Article_IEq56.gif

Fig. 1

Fig. 1

Fig. 1

Fig. 3

Fig. 1

Fig. 9

Fig. 4

Fig. 2

Fig. 1

Fig. 7

Fig. 1

Fig. 6

Fig. 5

12888_2023_4583_Article_IEq1.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:6次 浏览次数:2次