期刊论文详细信息
Journal of Biological Engineering
High throughput mutagenesis and screening for yeast engineering
Review
John Blazeck1  Kendreze Holland2 
[1] Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia, USA;School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia, USA;
关键词: High throughput;    Directed evolution;    Selection schemes;    S. cerevisiae;    Yeast-display;    In vivo;    CRISPR-Cas9;    Genome-wide;    Cellular engineering;    Protein engineering;   
DOI  :  10.1186/s13036-022-00315-7
 received in 2022-09-27, accepted in 2022-12-03,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

The eukaryotic yeast Saccharomyces cerevisiae is a model host utilized for whole cell biocatalytic conversions, protein evolution, and scientific inquiries into the pathogenesis of human disease. Over the past decade, the scale and pace of such studies has drastically increased alongside the advent of novel tools for both genome-wide studies and targeted genetic mutagenesis. In this review, we will detail past and present (e.g., CRISPR/Cas) genome-scale screening platforms, typically employed in the context of growth-based selections for improved whole cell phenotype or for mechanistic interrogations. We will further highlight recent advances that enable the rapid and often continuous evolution of biomolecules with improved function. Additionally, we will detail the corresponding advances in high throughput selection and screening strategies that are essential for assessing or isolating cellular and protein improvements. Finally, we will describe how future developments can continue to advance yeast high throughput engineering.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305069693681ZK.pdf 1586KB PDF download
Fig. 1 345KB Image download
Fig. 3 323KB Image download
40249_2022_1045_Article_IEq9.gif 1KB Image download
【 图 表 】

40249_2022_1045_Article_IEq9.gif

Fig. 3

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  文献评价指标  
  下载次数:7次 浏览次数:0次