期刊论文详细信息
Inflammation and Regeneration
Cancer ego-system in glioma: an iron-replenishing niche network systemically self-organized by cancer stem cells
Review
Kouichi Tabu1  Tetsuya Taga1 
[1] Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan;
关键词: Cancer ecosystem;    Cancer stem cell;    Niche;    Glioma;    Tumor-associated macrophage;    Erythropoiesis;    Erythrophagocytosis;    Iron;   
DOI  :  10.1186/s41232-022-00240-8
 received in 2022-07-24, accepted in 2022-11-16,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

For all living organisms, the adaptation to outside environments is an essential determinant to survive natural and artificial selections and to sustain the whole ecosystem intact with functional biodiversity. Likewise, cancer cells have similar characteristics that evade not only stresses from the host-internal innate and adaptive immune systems but also those from host-externally administered therapeutic interventions. Such selfish characteristics of cancer cells lead to the formation of cancerous ecosystem with a wide variety of phenotypic heterogeneity, which should be called cancer “egosystem” from the host point of view. Recently increasing evidence demonstrates that cancer stem cells (CSCs) are responsible for this cancer egosystem by effectively exploiting host inflammatory and hematopoietic cells and thereby reconstructing their own advantageous niches, which may well be a driving force in cancer recurrence. CSCs are further likely to render multiple niches mutually interconnected and cooperating as a network to support back CSCs themselves. Here, we summarize a recently identified iron-replenishing niche network self-organized by glioma CSCs (GSCs) through remote regulation of host myeloid and erythroid lineage cells. GSCs recruit bone marrow (BM)-derived inflammatory monocytes into tumor parenchyma, facilitate their differentiation into macrophages (Mφs) and skew their polarization into pro-tumoral phenotype, i.e., tumor-associated Mφs (TAMs). Meanwhile, GSCs distantly enhance erythropoiesis in host hematopoietic organs like BM and spleen potentially by secreting some soluble mediators that maintain continuous supply of erythrocytes within tumors. In addition, as normal red pulp Mφs (RPMs) under steady state conditions in spleen recycle iron by phagocytosing the aged or damaged erythrocytes (a/dECs) and release it in time of need, TAMs at least in gliomas phagocytose the hemorrhaged erythrocytes within tumors and potentially serve as a source of iron, an important nutrient indispensable to GSC survival and glioma progression. Taken together, these studies provide the substantial evidence that CSCs have a unique strategy to orchestrate multiple niches as an ecosystem that threatens the host living, which in this sense must be an egosystem. Targeting such an adaptive subpopulation of CSCs could achieve drastic disturbance of the CSC niches and subsequent extinction of malignant neoplasms.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305069379751ZK.pdf 1744KB PDF download
MediaObjects/41408_2022_764_MOESM1_ESM.docx 1560KB Other download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  文献评价指标  
  下载次数:12次 浏览次数:5次