期刊论文详细信息
Journal of NeuroEngineering and Rehabilitation
Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection
Research
Jenna Wiens1  Kathleen H. Sienko2  Safa Jabri2  Wendy Carender3 
[1] Department of Electrical Engineering and Computer Science, University of Michigan, 48109, Ann Arbor, MI, USA;Department of Mechanical Engineering, University of Michigan, 48109, Ann Arbor, MI, USA;Department of Otolaryngology, Michigan Medicine, 48109, Ann Arbor, MI, USA;
关键词: Balance;    Gait;    Vestibular disorders;    Wearable sensors;    Machine learning;    Classification;   
DOI  :  10.1186/s12984-022-01099-z
 received in 2022-05-03, accepted in 2022-10-25,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundVestibular deficits can impair an individual’s ability to maintain postural and/or gaze stability. Characterizing gait abnormalities among individuals affected by vestibular deficits could help identify patients at high risk of falling and inform rehabilitation programs. Commonly used gait assessment tools rely on simple measures such as timing and visual observations of path deviations by clinicians. These simple measures may not capture subtle changes in gait kinematics. Therefore, we investigated the use of wearable inertial measurement units (IMUs) and machine learning (ML) approaches to automatically discriminate between gait patterns of individuals with vestibular deficits and age-matched controls. The goal of this study was to examine the effects of IMU placement and gait task selection on the performance of automatic vestibular gait classifiers.MethodsThirty study participants (15 with vestibular deficits and 15 age-matched controls) participated in a single-session gait study during which they performed seven gait tasks while donning a full-body set of IMUs. Classification performance was reported in terms of area under the receiver operating characteristic curve (AUROC) scores for Random Forest models trained on data from each IMU placement for each gait task.ResultsSeveral models were able to classify vestibular gait better than random (AUROC > 0.5), but their performance varied according to IMU placement and gait task selection. Results indicated that a single IMU placed on the left arm when walking with eyes closed resulted in the highest AUROC score for a single IMU (AUROC = 0.88 [0.84, 0.89]). Feature permutation results indicated that participants with vestibular deficits reduced their arm swing compared to age-matched controls while they walked with eyes closed.ConclusionsThese findings highlighted differences in upper extremity kinematics during walking with eyes closed that were characteristic of vestibular deficits and showed evidence of the discriminative ability of IMU-based automated screening for vestibular deficits. Further research should explore the mechanisms driving arm swing differences in the vestibular population.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305066233339ZK.pdf 3358KB PDF download
Fig. 3 176KB Image download
MediaObjects/12888_2022_4455_MOESM1_ESM.pdf 112KB PDF download
Fig. 1 68KB Image download
Fig. 6 173KB Image download
12936_2022_4386_Article_IEq169.gif 1KB Image download
Fig. 1 488KB Image download
Fig. 1 112KB Image download
Fig. 2 496KB Image download
Fig. 2 621KB Image download
Fig. 2 221KB Image download
Fig. 4 52KB Image download
12936_2022_4386_Article_IEq179.gif 1KB Image download
Fig. 3 302KB Image download
Fig. 7 254KB Image download
Fig. 10 68KB Image download
12936_2022_4386_Article_IEq183.gif 1KB Image download
Fig. 1 240KB Image download
Fig. 9 614KB Image download
Fig. 2 1630KB Image download
Fig. 11 97KB Image download
MediaObjects/13046_2022_2501_MOESM1_ESM.pdf 8331KB PDF download
Fig. 6 300KB Image download
969KB Image download
Fig. 6 112KB Image download
Fig. 1 852KB Image download
Fig. 7 225KB Image download
Fig. 3 228KB Image download
Fig. 2 497KB Image download
Fig. 1 932KB Image download
Fig. 13 590KB Image download
Fig. 1 884KB Image download
Fig. 1 2051KB Image download
Fig. 1 111KB Image download
Fig. 2 505KB Image download
40560_2022_645_Article_IEq2.gif 1KB Image download
40560_2022_645_Article_IEq3.gif 1KB Image download
Fig. 2 1121KB Image download
Fig. 4 2160KB Image download
MediaObjects/40560_2022_645_MOESM1_ESM.docx 1548KB Other download
MediaObjects/12974_2022_2667_MOESM7_ESM.xlsx 2852KB Other download
Fig. 1 427KB Image download
Fig. 1 328KB Image download
Fig. 3 1244KB Image download
Fig. 1 (abstract P46). 228KB Image download
Fig. 3 870KB Image download
Fig. 1 1323KB Image download
Fig. 1 219KB Image download
Fig.1 202KB Image download
Fig. 4 395KB Image download
Fig. 3 199KB Image download
Fig. 1 356KB Image download
Fig. 4 523KB Image download
Fig. 2 239KB Image download
Fig. 1 153KB Image download
Fig. 5 1457KB Image download
Fig. 3 49KB Image download
Fig. 5 769KB Image download
Fig. 1 26KB Image download
Fig. 5 572KB Image download
MediaObjects/12888_2022_4340_MOESM2_ESM.pdf 45KB PDF download
Fig. 1 76KB Image download
Fig. 3 358KB Image download
Fig. 3 722KB Image download
MediaObjects/13045_2022_1388_MOESM4_ESM.xlsx 8111KB Other download
Fig. 4 751KB Image download
Fig. 4 844KB Image download
Fig. 1 42KB Image download
Fig. 6 2878KB Image download
Fig. 4 1207KB Image download
Fig. 1 266KB Image download
MediaObjects/40360_2022_632_MOESM1_ESM.zip 1974KB Package download
Fig. 2 1063KB Image download
Fig. 1 407KB Image download
Fig. 2 269KB Image download
MediaObjects/12864_2022_9089_MOESM2_ESM.docx 14KB Other download
Fig. 2 502KB Image download
Fig. 1 42KB Image download
MediaObjects/40249_2022_1044_MOESM1_ESM.xlsx 16KB Other download
MediaObjects/40249_2022_1044_MOESM2_ESM.xlsx 14KB Other download
MediaObjects/40249_2022_1044_MOESM3_ESM.xlsx 16KB Other download
Fig. 4 123KB Image download
【 图 表 】

Fig. 4

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 1

Fig. 4

Fig. 6

Fig. 1

Fig. 4

Fig. 4

Fig. 3

Fig. 3

Fig. 1

Fig. 5

Fig. 1

Fig. 5

Fig. 3

Fig. 5

Fig. 1

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 4

Fig.1

Fig. 1

Fig. 1

Fig. 3

Fig. 1 (abstract P46).

Fig. 3

Fig. 1

Fig. 1

Fig. 4

Fig. 2

40560_2022_645_Article_IEq3.gif

40560_2022_645_Article_IEq2.gif

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 13

Fig. 1

Fig. 2

Fig. 3

Fig. 7

Fig. 1

Fig. 6

Fig. 6

Fig. 11

Fig. 2

Fig. 9

Fig. 1

12936_2022_4386_Article_IEq183.gif

Fig. 10

Fig. 7

Fig. 3

12936_2022_4386_Article_IEq179.gif

Fig. 4

Fig. 2

Fig. 2

Fig. 2

Fig. 1

Fig. 1

12936_2022_4386_Article_IEq169.gif

Fig. 6

Fig. 1

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  文献评价指标  
  下载次数:7次 浏览次数:2次