期刊论文详细信息
Parasites & Vectors
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
Research
Zhiyong Xi1  Adam E. Vorsino2 
[1] Department of Microbiology and Molecular Genetics, Michigan State University, 314 Giltner Hall, 293 Farm Lane, 48824, East Lansing, MI, USA;Strategic Habitat Conservation Program, Ecological Services, Pacific Islands Fish and Wildlife Office, U.S. Fish and Wildlife Service, 300 Ala Moana Blvd Ste. 3-122, 96850, Honolulu, Hawaiʻi, USA;
关键词: Sterile insect technique;    Incompatible insect technique;    Culicid;    Infrastructure;    Cost calculator;    Hawaiʻi;   
DOI  :  10.1186/s13071-022-05522-1
 received in 2022-04-26, accepted in 2022-09-13,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundHawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi.MethodsThe overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males.ResultsAs a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti.ConclusionsOur cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site.Graphic Abstract

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305062106610ZK.pdf 1169KB PDF download
12888_2022_4365_Article_IEq46.gif 1KB Image download
12888_2022_4365_Article_IEq53.gif 1KB Image download
12982_2022_119_Article_IEq153.gif 1KB Image download
12982_2022_119_Article_IEq154.gif 1KB Image download
12982_2022_119_Article_IEq155.gif 1KB Image download
Fig. 11 715KB Image download
12982_2022_119_Article_IEq156.gif 1KB Image download
12982_2022_119_Article_IEq157.gif 1KB Image download
12982_2022_119_Article_IEq158.gif 1KB Image download
12982_2022_119_Article_IEq159.gif 1KB Image download
12982_2022_119_Article_IEq160.gif 1KB Image download
12982_2022_119_Article_IEq162.gif 1KB Image download
12888_2022_4451_Article_IEq1.gif 1KB Image download
12982_2022_119_Article_IEq169.gif 1KB Image download
12982_2022_119_Article_IEq171.gif 1KB Image download
【 图 表 】

12982_2022_119_Article_IEq171.gif

12982_2022_119_Article_IEq169.gif

12888_2022_4451_Article_IEq1.gif

12982_2022_119_Article_IEq162.gif

12982_2022_119_Article_IEq160.gif

12982_2022_119_Article_IEq159.gif

12982_2022_119_Article_IEq158.gif

12982_2022_119_Article_IEq157.gif

12982_2022_119_Article_IEq156.gif

Fig. 11

12982_2022_119_Article_IEq155.gif

12982_2022_119_Article_IEq154.gif

12982_2022_119_Article_IEq153.gif

12888_2022_4365_Article_IEq53.gif

12888_2022_4365_Article_IEq46.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:3次 浏览次数:0次