期刊论文详细信息
Plant Methods
Four-dimensional measurement of root system development using time-series three-dimensional volumetric data analysis by backward prediction
Methodology
Shota Teramoto1  Yusaku Uga1 
[1] Institute of Crop Sciences, National Agriculture & Food Research Organization, 305-8602, Tsukuba, Ibaraki, Japan;
关键词: Back prediction;    Crown root;    Image analysis;    Image processing;    Nodal root;    Radicle;    Root growth measurement;    Root system architecture;    Seminal root;    Sequential images;   
DOI  :  10.1186/s13007-022-00968-x
 received in 2022-07-13, accepted in 2022-12-03,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundRoot system architecture (RSA) is an essential characteristic for efficient water and nutrient absorption in terrestrial plants; its plasticity enables plants to respond to different soil environments. Better understanding of root plasticity is important in developing stress-tolerant crops. Non-invasive techniques that can measure roots in soils nondestructively, such as X-ray computed tomography (CT), are useful to evaluate RSA plasticity. However, although RSA plasticity can be measured by tracking individual root growth, only a few methods are available for tracking individual roots from time-series three-dimensional (3D) images.ResultsWe developed a semi-automatic workflow that tracks individual root growth by vectorizing RSA from time-series 3D images via two major steps. The first step involves 3D alignment of the time-series RSA images by iterative closest point registration with point clouds generated by high-intensity particles in potted soils. This alignment ensures that the time-series RSA images overlap. The second step consists of backward prediction of vectorization, which is based on the phenomenon that the root length of the RSA vector at the earlier time point is shorter than that at the last time point. In other words, when CT scanning is performed at time point A and again at time point B for the same pot, the CT data and RSA vectors at time points A and B will almost overlap, but not where the roots have grown. We assumed that given a manually created RSA vector at the last time point of the time series, all RSA vectors except those at the last time point could be automatically predicted by referring to the corresponding RSA images. Using 21 time-series CT volumes of a potted plant of upland rice (Oryza sativa), this workflow revealed that the root elongation speed increased with age. Compared with a workflow that does not use backward prediction, the workflow with backward prediction reduced the manual labor time by 95%.ConclusionsWe developed a workflow to efficiently generate time-series RSA vectors from time-series X-ray CT volumes. We named this workflow 'RSAtrace4D' and are confident that it can be applied to the time-series analysis of RSA development and plasticity.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305061865472ZK.pdf 2411KB PDF download
MediaObjects/12888_2022_4395_MOESM1_ESM.xlsx 128KB Other download
MediaObjects/12888_2022_4395_MOESM2_ESM.doc 12KB Other download
Fig. 3 1712KB Image download
Fig. 3 107KB Image download
MediaObjects/40249_2022_1047_MOESM1_ESM.docx 26KB Other download
MediaObjects/12974_2022_2652_MOESM4_ESM.pdf 29720KB PDF download
Fig. 2 144KB Image download
Fig. 3 364KB Image download
Fig. 3 323KB Image download
Fig. 3 558KB Image download
12864_2022_9026_Article_IEq26.gif 1KB Image download
Fig. 4 1002KB Image download
Fig. 1 537KB Image download
Fig. 1 743KB Image download
Fig. 4 987KB Image download
40249_2022_1045_Article_IEq1.gif 1KB Image download
MediaObjects/41408_2022_759_MOESM1_ESM.docx 20KB Other download
Fig. 1 62KB Image download
MediaObjects/41408_2022_759_MOESM2_ESM.pdf 4455KB PDF download
MediaObjects/12888_2022_4457_MOESM1_ESM.docx 57KB Other download
40249_2022_1045_Article_IEq6.gif 1KB Image download
40249_2022_1045_Article_IEq7.gif 1KB Image download
40249_2022_1045_Article_IEq8.gif 1KB Image download
40249_2022_1045_Article_IEq9.gif 1KB Image download
40249_2022_1045_Article_IEq10.gif 1KB Image download
40249_2022_1045_Article_IEq11.gif 1KB Image download
40249_2022_1045_Article_IEq12.gif 1KB Image download
40249_2022_1045_Article_IEq13.gif 1KB Image download
40249_2022_1045_Article_IEq14.gif 1KB Image download
40249_2022_1045_Article_IEq15.gif 1KB Image download
Fig. 1 1143KB Image download
40249_2022_1045_Article_IEq16.gif 1KB Image download
41408_2022_764_Article_IEq6.gif 1KB Image download
Fig. 2 141KB Image download
【 图 表 】

Fig. 2

41408_2022_764_Article_IEq6.gif

40249_2022_1045_Article_IEq16.gif

Fig. 1

40249_2022_1045_Article_IEq15.gif

40249_2022_1045_Article_IEq14.gif

40249_2022_1045_Article_IEq13.gif

40249_2022_1045_Article_IEq12.gif

40249_2022_1045_Article_IEq11.gif

40249_2022_1045_Article_IEq10.gif

40249_2022_1045_Article_IEq9.gif

40249_2022_1045_Article_IEq8.gif

40249_2022_1045_Article_IEq7.gif

40249_2022_1045_Article_IEq6.gif

Fig. 1

40249_2022_1045_Article_IEq1.gif

Fig. 4

Fig. 1

Fig. 1

Fig. 4

12864_2022_9026_Article_IEq26.gif

Fig. 3

Fig. 3

Fig. 3

Fig. 2

Fig. 3

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  文献评价指标  
  下载次数:2次 浏览次数:0次