期刊论文详细信息
BMC Bioinformatics 卷:23
MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling
Research
Aoi Hatae1  Yukie Sakai1  Hiroyuki Kurata1  Kazuhiro Maeda1  Fred C. Boogerd2 
[1] Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, 820-8502, Iizuka, Fukuoka, Japan;
[2] Department of Molecular Cell Biology, Faculty of Science, VU University Amsterdam, O
[3] 2 Building, Amsterdam, The Netherlands;
关键词: Simulation;    Michaelis constant;    Kinetic modeling;    Parameter estimation;    Machine learning;    Global optimization;    Systems biology;   
DOI  :  10.1186/s12859-022-05009-x
 received in 2022-08-29, accepted in 2022-10-26,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundKinetic modeling is a powerful tool for understanding the dynamic behavior of biochemical systems. For kinetic modeling, determination of a number of kinetic parameters, such as the Michaelis constant (Km), is necessary, and global optimization algorithms have long been used for parameter estimation. However, the conventional global optimization approach has three problems: (i) It is computationally demanding. (ii) It often yields unrealistic parameter values because it simply seeks a better model fitting to experimentally observed behaviors. (iii) It has difficulty in identifying a unique solution because multiple parameter sets can allow a kinetic model to fit experimental data equally well (the non-identifiability problem).ResultsTo solve these problems, we propose the Machine Learning-Aided Global Optimization (MLAGO) method for Km estimation of kinetic modeling. First, we use a machine learning-based Km predictor based only on three factors: EC number, KEGG Compound ID, and Organism ID, then conduct a constrained global optimization-based parameter estimation by using the machine learning-predicted Km values as the reference values. The machine learning model achieved relatively good prediction scores: RMSE = 0.795 and R2 = 0.536, making the subsequent global optimization easy and practical. The MLAGO approach reduced the error between simulation and experimental data while keeping Km values close to the machine learning-predicted values. As a result, the MLAGO approach successfully estimated Km values with less computational cost than the conventional method. Moreover, the MLAGO approach uniquely estimated Km values, which were close to the measured values.ConclusionsMLAGO overcomes the major problems in parameter estimation, accelerates kinetic modeling, and thus ultimately leads to better understanding of complex cellular systems. The web application for our machine learning-based Km predictor is accessible at https://sites.google.com/view/kazuhiro-maeda/software-tools-web-apps, which helps modelers perform MLAGO on their own parameter estimation tasks.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202304228626338ZK.pdf 3136KB PDF download
MediaObjects/12864_2021_7657_MOESM3_ESM.xlsx 22KB Other download
MediaObjects/12870_2022_3884_MOESM7_ESM.xlsx 9115KB Other download
Fig. 1 79KB Image download
13753_2023_478_Article_IEq58.gif 1KB Image download
Fig. 3 2013KB Image download
Fig. 3 598KB Image download
Fig. 9 674KB Image download
40507_2023_167_Article_IEq261.gif 1KB Image download
40507_2023_167_Article_IEq262.gif 1KB Image download
Fig. 2 334KB Image download
Fig. 1 62KB Image download
MediaObjects/13046_2019_1188_MOESM6_ESM.tif 59KB Other download
MediaObjects/13011_2023_518_MOESM1_ESM.pdf 65KB PDF download
Fig. 10 39KB Image download
Fig. 3 76KB Image download
Fig. 1 91KB Image download
Fig. 2 236KB Image download
Fig. 5 70KB Image download
40854_2023_488_Article_IEq2.gif 1KB Image download
40854_2023_488_Article_IEq3.gif 1KB Image download
【 图 表 】

40854_2023_488_Article_IEq3.gif

40854_2023_488_Article_IEq2.gif

Fig. 5

Fig. 2

Fig. 1

Fig. 3

Fig. 10

Fig. 1

Fig. 2

40507_2023_167_Article_IEq262.gif

40507_2023_167_Article_IEq261.gif

Fig. 9

Fig. 3

Fig. 3

13753_2023_478_Article_IEq58.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  文献评价指标  
  下载次数:10次 浏览次数:1次