期刊论文详细信息
BMC Bioinformatics 卷:23
A multilayer dynamic perturbation analysis method for predicting ligand–protein interactions
Research
Dengming Ming1  Lin Gu1  Bin Li1 
[1] College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangbei New District, 211816, Nanjing City, Jiangsu, People’s Republic of China;
关键词: Ligand–protein interaction;    Ligand spatial extension;    Multilayer;    Dynamics perturbation analysis;    DPA;   
DOI  :  10.1186/s12859-022-04995-2
 received in 2022-05-09, accepted in 2022-10-19,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundLigand–protein interactions play a key role in defining protein function, and detecting natural ligands for a given protein is thus a very important bioengineering task. In particular, with the rapid development of AI-based structure prediction algorithms, batch structural models with high reliability and accuracy can be obtained at low cost, giving rise to the urgent requirement for the prediction of natural ligands based on protein structures. In recent years, although several structure-based methods have been developed to predict ligand-binding pockets and ligand-binding sites, accurate and rapid methods are still lacking, especially for the prediction of ligand-binding regions and the spatial extension of ligands in the pockets.ResultsIn this paper, we proposed a multilayer dynamics perturbation analysis (MDPA) method for predicting ligand-binding regions based solely on protein structure, which is an extended version of our previously developed fast dynamic perturbation analysis (FDPA) method. In MDPA/FDPA, ligand binding tends to occur in regions that cause large changes in protein conformational dynamics. MDPA, examined using a standard validation dataset of ligand-protein complexes, yielded an averaged ligand-binding site prediction Matthews coefficient of 0.40, with a prediction precision of at least 50% for 71% of the cases. In particular, for 80% of the cases, the predicted ligand-binding region overlaps the natural ligand by at least 50%. The method was also compared with other state-of-the-art structure-based methods.ConclusionsMDPA is a structure-based method to detect ligand-binding regions on protein surface. Our calculations suggested that a range of spaces inside the protein pockets has subtle interactions with the protein, which can significantly impact on the overall dynamics of the protein. This work provides a valuable tool as a starting point upon which further docking and analysis methods can be used for natural ligand detection in protein functional annotation. The source code of MDPA method is freely available at: https://github.com/mingdengming/mdpa.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202304221748203ZK.pdf 2037KB PDF download
Fig. 3 343KB Image download
Fig. 11 1173KB Image download
MediaObjects/41420_2022_1000_MOESM4_ESM.jpg 987KB Other download
Fig. 13 136KB Image download
Fig. 5 1832KB Image download
Fig. 2 830KB Image download
MediaObjects/12014_2023_9405_MOESM1_ESM.docx 195KB Other download
Fig. 1 617KB Image download
MediaObjects/12870_2023_4220_MOESM2_ESM.pdf 234KB PDF download
Fig. 3 682KB Image download
MediaObjects/12870_2023_4187_MOESM16_ESM.pdf 151KB PDF download
40507_2023_167_Article_IEq179.gif 1KB Image download
40507_2023_167_Article_IEq180.gif 1KB Image download
MediaObjects/41408_2022_754_MOESM1_ESM.docx 12KB Other download
Fig. 1 934KB Image download
40507_2023_167_Article_IEq183.gif 1KB Image download
40507_2023_167_Article_IEq185.gif 1KB Image download
Fig. 4 409KB Image download
Fig. 2 113KB Image download
Fig. 3 294KB Image download
Fig. 1 1564KB Image download
832KB Image download
Fig. 1 481KB Image download
Fig. 6 408KB Image download
Fig. 3 142KB Image download
Fig. 5 867KB Image download
Fig. 1 1279KB Image download
Fig. 4 1932KB Image download
Fig. 10 796KB Image download
40507_2023_167_Article_IEq240.gif 1KB Image download
40507_2023_167_Article_IEq242.gif 1KB Image download
40507_2023_167_Article_IEq243.gif 1KB Image download
MediaObjects/13750_2022_285_MOESM7_ESM.docx 47KB Other download
MediaObjects/41534_2022_642_MOESM1_ESM.pdf 1322KB PDF download
MediaObjects/12864_2021_7657_MOESM3_ESM.xlsx 22KB Other download
Fig. 3 702KB Image download
MediaObjects/12870_2022_3884_MOESM7_ESM.xlsx 9115KB Other download
13753_2023_478_Article_IEq48.gif 1KB Image download
Fig. 3 506KB Image download
Fig. 2 148KB Image download
Fig. 1 422KB Image download
Fig. 1 79KB Image download
Fig. 4 557KB Image download
Fig. 3 188KB Image download
Fig. 4 69KB Image download
Fig. 8 6139KB Image download
Fig. 5 188KB Image download
13753_2023_478_Article_IEq58.gif 1KB Image download
Fig. 5 133KB Image download
Fig. 2 204KB Image download
Fig. 1 366KB Image download
Fig. 6 285KB Image download
Fig. 7 47KB Image download
Fig. 3 2013KB Image download
Fig. 8 73KB Image download
MediaObjects/12936_2022_4322_MOESM1_ESM.r 58KB Other download
Fig. 2 378KB Image download
MediaObjects/13227_2023_212_MOESM1_ESM.pdf 21KB PDF download
40854_2023_488_Article_IEq22.gif 1KB Image download
Fig. 1 371KB Image download
40854_2023_488_Article_IEq24.gif 1KB Image download
MediaObjects/12888_2023_4760_MOESM2_ESM.docx 110870KB Other download
【 图 表 】

40854_2023_488_Article_IEq24.gif

Fig. 1

40854_2023_488_Article_IEq22.gif

Fig. 2

Fig. 8

Fig. 3

Fig. 7

Fig. 6

Fig. 1

Fig. 2

Fig. 5

13753_2023_478_Article_IEq58.gif

Fig. 5

Fig. 8

Fig. 4

Fig. 3

Fig. 4

Fig. 1

Fig. 1

Fig. 2

Fig. 3

13753_2023_478_Article_IEq48.gif

Fig. 3

40507_2023_167_Article_IEq243.gif

40507_2023_167_Article_IEq242.gif

40507_2023_167_Article_IEq240.gif

Fig. 10

Fig. 4

Fig. 1

Fig. 5

Fig. 3

Fig. 6

Fig. 1

Fig. 1

Fig. 3

Fig. 2

Fig. 4

40507_2023_167_Article_IEq185.gif

40507_2023_167_Article_IEq183.gif

Fig. 1

40507_2023_167_Article_IEq180.gif

40507_2023_167_Article_IEq179.gif

Fig. 3

Fig. 1

Fig. 2

Fig. 5

Fig. 13

Fig. 11

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  文献评价指标  
  下载次数:2次 浏览次数:0次