[1] Department of Radiology, University of Medicine and Pharmacy , Hue University;Department of Internal Medicine, University of Medicine and Pharmacy , Hue University;Department of Physiology, University of Medicine and Pharmacy , Hue University;Department of Surgery, University of Medicine and Pharmacy , Hue University
Background: To explore the value of diffusion tensor imaging (DTI)-derived metrics in quantitative evaluation of carpal tunnel syndrome (CTS). Methods: This prospective cross-sectional study included 39 wrists from 24 symptomatic CTS patients, who underwent clinical, electrophysiological, and magnetic resonance imaging (MRI) evaluations. In addition, 10 wrists of 6 healthy participants were included as controls. Clinical and nerve conduction study (NCS) findings were evaluated and graded according to the Boston Carpal Tunnel Questionnaire (BCTQ) and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM), respectively. We performed MRI using a 1.5 Tesla scanner. Mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of the median nerve at the distal radioulnar joint (DRUJ) (d), the inlet of the carpal tunnel (CT) at the pisiform level (i), the middle of the CT (m) and the outlet of the CT at the level of the hook of hamate (o), cross-sectional area at the inlet of the CT (iCSA), and the difference between MD and FA of the DRUJ and the outlet of CT (Delta MD and Delta FA) were measured. Results: The CTS patients had significantly lower FA [for example, oFA: mean difference 0.09, 95% confidence interval (CI): 0.05 to 0.12] and significantly higher MD than healthy participants (for example, iMD: mean difference 0.3, 95% CI: 0.03 to 0.57). There was a negative correlation between iCSA with iFA and between mFA and oFA (−0.5