L ∞ L ∞ L_{\infty} -norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise" /> 期刊论文

期刊论文详细信息
AIMS Mathematics
L ∞ " role="presentation" style="position: relative;"> L ∞ L ∞ L_{\infty} -norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise
article
Huiping Jiao1  Xiao Zhang2  Chao Wei3 
[1] School of Basic Science, Zhengzhou University of Technology;School of Marxism, Anyang Normal University;School of Mathematics and Statistics, Anyang Normal University
关键词: $ L_{\infty} $-norm minimum distance estimation;    stochastic differential equations;    small fractional Lévy noise;    consistency;    asymptotic distribution;   
DOI  :  10.3934/math.2023107
学科分类:地球科学(综合)
来源: AIMS Press
PDF
【 摘 要 】

This paper is concerned with $ L_{\infty} $-norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise. By applying the Gronwall-Bellman lemma, Chebyshev's inequality and Taylor's formula, the minimum distance estimator is established and the consistency and asymptotic distribution of the estimator are derived when a small dispersion coefficient $ \varepsilon\rightarrow 0 $.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202302200002474ZK.pdf 221KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次