AIMS Mathematics | |
A α " role="presentation" style="position: relative;"> A α A α A_{\alpha} matrix of commuting graphs of non-abelian groups | |
article | |
Bilal A. Rather1  Fawad Ali2  Nasim Ullah3  Al-Sharef Mohammad3  Anwarud Din4  Sehra5  | |
[1] Department of Mathematical Sciences, College of Science, United Arab Emirate University;Institute of Numerical Sciences, Kohat University of Science and Technology;Department of Electrical Engineering, College of Engineering Taif University;Department of Mathematics, Sun Yat-Sen University;Department of Mathematics, Shaheed Benazir Bhutto Women University | |
关键词: $ A_{\alpha} $ matrix; commuting graph; adjacency matrix; Laplacian matrix; signless Laplacian matrix; non-abelian groups; | |
DOI : 10.3934/math.2022845 | |
学科分类:地球科学(综合) | |
来源: AIMS Press | |
【 摘 要 】
For a finite group $ \mathcal{G} $ and a subset $ X\neq \emptyset $ of $ \mathcal{G} $, the commuting graph, indicated by $ G = \mathcal{C}(\mathcal{G}, X) $, is the simple connected graph with vertex set $ X $ and two distinct vertices $ x $ and $ y $ are edge connected in $ G $ if and only if they commute in $ X $. The $ A_{\alpha} $ matrix of $ G $ is specified as $ A_{\alpha}(G) = \alpha D(G)+(1-\alpha) A(G), \; \alpha\in[0, 1] $, where $ D(G) $ is the diagonal matrix of vertex degrees while $ A(G) $ is the adjacency matrix of $ G. $ In this article, we investigate the $ A_{\alpha} $ matrix for commuting graphs of finite groups and we also find the $ A_{\alpha} $ eigenvalues of the dihedral, the semidihedral and the dicyclic groups. We determine the upper bounds for the largest $ A_{\alpha} $ eigenvalue for these graphs. Consequently, we get the adjacency eigenvalues, the Laplacian eigenvalues, and the signless Laplacian eigenvalues of these graphs for particular values of $ \alpha $. Further, we show that these graphs are Laplacian integral.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200002072ZK.pdf | 271KB | download |